Computer Vision Metrics Survey, Taxonomy, and Analysis /

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Krig, Scott (Autor)
Autor corporatiu: SpringerLink (Online service)
Format: Electrònic eBook
Idioma:anglès
Publicat: Berkeley, CA : Apress : Imprint: Apress, 2014.
Edició:1st ed. 2014.
Matèries:
Accés en línia:Link to Metadata
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Sumari:Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing 'how-to' source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
Descripció física:XXXI, 508 p. 216 illus. online resource.
ISBN:9781430259305
DOI:10.1007/978-1-4302-5930-5
Accés:Open Access