Computer Vision Metrics Survey, Taxonomy, and Analysis /

Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point...

Полное описание

Сохранить в:
Библиографические подробности
Главный автор: Krig, Scott (Автор)
Соавтор: SpringerLink (Online service)
Формат: Электронный ресурс eКнига
Язык:английский
Опубликовано: Berkeley, CA : Apress : Imprint: Apress, 2014.
Редактирование:1st ed. 2014.
Предметы:
Online-ссылка:Link to Metadata
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Итог:Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing 'how-to' source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.
Объем:XXXI, 508 p. 216 illus. online resource.
ISBN:9781430259305
DOI:10.1007/978-1-4302-5930-5
Доступ:Open Access