Hardy Inequalities on Homogeneous Groups 100 Years of Hardy Inequalities /

This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many oth...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruzhansky, Michael (Author), Suragan, Durvudkhan (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2019.
Edition:1st ed. 2019.
Series:Progress in Mathematics, 327
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-02895-4
003 DE-He213
005 20220118200755.0
007 cr nn 008mamaa
008 190702s2019 sz | s |||| 0|eng d
020 |a 9783030028954  |9 978-3-030-02895-4 
024 7 |a 10.1007/978-3-030-02895-4  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Ruzhansky, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hardy Inequalities on Homogeneous Groups  |h [electronic resource] :  |b 100 Years of Hardy Inequalities /  |c by Michael Ruzhansky, Durvudkhan Suragan. 
250 |a 1st ed. 2019. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2019. 
300 |a XVI, 571 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 327 
505 0 |a Introduction -- Analysis on Homogeneous Groups -- Hardy Inequalities on Homogeneous Groups -- Rellich, Caarelli-Kohn-Nirenberg, and Sobolev Type Inequalities -- Fractional Hardy Inequalities -- Integral Hardy Inequalities on Homogeneous Groups -- Horizontal Inequalities on Stratied Groups -- Hardy-Rellich Inequalities and Fundamental Solutions -- Geometric Hardy Inequalities on Stratied Groups -- Uncertainty Relations on Homogeneous Groups -- Function Spaces on Homogeneous Groups -- Elements of Potential Theory on Stratified Groups -- Hardy and Rellich Inequalities for Sums of Squares -- Bibliography -- Index. 
506 0 |a Open Access 
520 |a This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hörmander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Differential equations. 
650 0 |a Harmonic analysis. 
650 0 |a Functional analysis. 
650 0 |a Geometry, Differential. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Potential Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Abstract Harmonic Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Differential Geometry. 
700 1 |a Suragan, Durvudkhan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030028947 
776 0 8 |i Printed edition:  |z 9783030028961 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 327 
856 4 0 |u https://doi.org/10.1007/978-3-030-02895-4  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)