Planar Maps, Random Walks and Circle Packing École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /

This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps...

Full description

Saved in:
Bibliographic Details
Main Author: Nachmias, Asaf (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:École d'Été de Probabilités de Saint-Flour ; 2243
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-27968-4
003 DE-He213
005 20220116232200.0
007 cr nn 008mamaa
008 191004s2020 sz | s |||| 0|eng d
020 |a 9783030279684  |9 978-3-030-27968-4 
024 7 |a 10.1007/978-3-030-27968-4  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Nachmias, Asaf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Planar Maps, Random Walks and Circle Packing  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XLVIII - 2018 /  |c by Asaf Nachmias. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XII, 120 p. 36 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 2243 
506 0 |a Open Access 
520 |a This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed. 
650 0 |a Probabilities. 
650 0 |a Discrete mathematics. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030279677 
776 0 8 |i Printed edition:  |z 9783030279691 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 2243 
856 4 0 |u https://doi.org/10.1007/978-3-030-27968-4  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)