Tensor Network Contractions Methods and Applications to Quantum Many-Body Systems /

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic...

Full description

Saved in:
Bibliographic Details
Main Authors: Ran, Shi-Ju (Author), Tirrito, Emanuele (Author), Peng, Cheng (Author), Chen, Xi (Author), Tagliacozzo, Luca (Author), Su, Gang (Author), Lewenstein, Maciej (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Lecture Notes in Physics, 964
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-34489-4
003 DE-He213
005 20220113015254.0
007 cr nn 008mamaa
008 200127s2020 sz | s |||| 0|eng d
020 |a 9783030344894  |9 978-3-030-34489-4 
024 7 |a 10.1007/978-3-030-34489-4  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Ran, Shi-Ju.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Tensor Network Contractions  |h [electronic resource] :  |b Methods and Applications to Quantum Many-Body Systems /  |c by Shi-Ju Ran, Emanuele Tirrito, Cheng Peng, Xi Chen, Luca Tagliacozzo, Gang Su, Maciej Lewenstein. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XIV, 150 p. 68 illus., 65 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 964 
505 0 |a Introduction -- Tensor Network: Basic Definitions and Properties -- Two-Dimensional Tensor Networks and Contraction Algorithms -- Tensor Network Approaches for Higher-Dimensional Quantum Lattice Models -- Tensor Network Contraction and Multi-Linear Algebra -- Quantum Entanglement Simulation Inspired by Tensor Network -- Summary. 
506 0 |a Open Access 
520 |a Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 0 |a Quantum optics. 
650 0 |a Machine learning. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Quantum Optics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Machine Learning. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
700 1 |a Tirrito, Emanuele.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Peng, Cheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Chen, Xi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tagliacozzo, Luca.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Su, Gang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Lewenstein, Maciej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030344887 
776 0 8 |i Printed edition:  |z 9783030344900 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 964 
856 4 0 |u https://doi.org/10.1007/978-3-030-34489-4  |z Link to Metadata 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
912 |a ZDB-2-SOB 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)