Quaternion Algebras

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results f...

Full description

Saved in:
Bibliographic Details
Main Author: Voight, John (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Graduate Texts in Mathematics, 288
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-56694-4
003 DE-He213
005 20240314124328.0
007 cr nn 008mamaa
008 210628s2021 sz | s |||| 0|eng d
020 |a 9783030566944  |9 978-3-030-56694-4 
024 7 |a 10.1007/978-3-030-56694-4  |2 doi 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.46  |2 23 
100 1 |a Voight, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quaternion Algebras  |h [electronic resource] /  |c by John Voight. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XXIII, 885 p. 69 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 288 
505 0 |a 1. Introduction -- 2. Beginnings -- 3. Involutions -- 4. Quadratic Forms -- 5. Ternary Quadratic Forms -- 6. Characteristic 2 -- 7. Simple Algebras -- 8. Simple Algebras and Involutions -- 9. Lattices and Integral Quadratic Forms -- 10. Orders -- 11. The Hurwitz Order -- 12. Ternary Quadratic Forms Over Local Fields -- 13. Quaternion Algebras Over Local Fields -- 14. Quaternion Algebras Over Global Fields -- 15. Discriminants -- 16. Quaternion Ideals and Invertability -- 17. Classes of Quaternion Ideals -- 18. Picard Group -- 19. Brandt Groupoids -- 20. Integral Representation Theory -- 21. Hereditary and Extremal Orders -- 22. Ternary Quadratic Forms -- 23. Quaternion Orders -- 24. Quaternion Orders: Second Meeting -- 25. The Eichler Mass Formula -- 26. Classical Zeta Functions -- 27. Adelic Framework -- 28. Strong Approximation -- 29. Idelic Zeta Functions -- 30. Optimal Embeddings -- 31. Selectivity -- 32. Unit Groups -- 33. Hyperbolic Plane -- 34. Discrete Group Actions -- 35. Classical Modular Group -- 36. Hyperbolic Space -- 37. Fundamental Domains -- 38. Quaternionic Arithmetic Groups -- 39. Volume Formula -- 40. Classical Modular Forms -- 41. Brandt Matrices -- 42. Supersingular Elliptic Curves -- 43. Abelian Surfaces with QM. 
506 0 |a Open Access 
520 |a This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation arerecapped throughout. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 0 |a Group theory. 
650 0 |a Number theory. 
650 1 4 |a Associative Rings and Algebras. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030566920 
776 0 8 |i Printed edition:  |z 9783030566937 
776 0 8 |i Printed edition:  |z 9783030574673 
830 0 |a Graduate Texts in Mathematics,  |x 2197-5612 ;  |v 288 
856 4 0 |u https://doi.org/10.1007/978-3-030-56694-4  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)