Data Science for Economics and Finance Methodologies and Applications /

This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some succ...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Consoli, Sergio (Editor), Reforgiato Recupero, Diego (Editor), Saisana, Michaela (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-66891-4
003 DE-He213
005 20240313113617.0
007 cr nn 008mamaa
008 210609s2021 sz | s |||| 0|eng d
020 |a 9783030668914  |9 978-3-030-66891-4 
024 7 |a 10.1007/978-3-030-66891-4  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 6,312  |2 23 
245 1 0 |a Data Science for Economics and Finance  |h [electronic resource] :  |b Methodologies and Applications /  |c edited by Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XIV, 355 p. 56 illus., 44 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Data Science Technologies in Economics and Finance: A Gentle Walk-In -- Supervised Learning for the Prediction of Firm Dynamics -- Opening the Black Box: Machine Learning Interpretability and Inference Tools with an Application to Economic Forecasting -- Machine Learning for Financial Stability -- Sharpening the Accuracy of Credit Scoring Models with Machine Learning Algorithms -- Classifying Counterparty Sector in EMIR Data -- Massive Data Analytics for Macroeconomic Nowcasting -- New Data Sources for Central Banks -- Sentiment Analysis of Financial News: Mechanics and Statistics -- Semi-supervised Text Mining for Monitoring the News About the ESG Performance of Companies -- Extraction and Representation of Financial Entities from Text -- Quantifying News Narratives to Predict Movements in Market Risk -- Do the Hype of the Benefits from Using New Data Science Tools Extend to Forecasting Extremely Volatile Assets? -- Network Analysis for Economics and Finance: An application to Firm Ownership. 
506 0 |a Open Access 
520 |a This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications. 
650 0 |a Data mining. 
650 0 |a Machine learning. 
650 0 |a Business information services. 
650 0 |a Quantitative research. 
650 0 |a Information technology  |x Management. 
650 0 |a Information storage and retrieval systems. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Machine Learning. 
650 2 4 |a Business Information Systems. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Computer Application in Administrative Data Processing. 
650 2 4 |a Information Storage and Retrieval. 
700 1 |a Consoli, Sergio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Reforgiato Recupero, Diego.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Saisana, Michaela.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030668907 
776 0 8 |i Printed edition:  |z 9783030668921 
776 0 8 |i Printed edition:  |z 9783030668938 
856 4 0 |u https://doi.org/10.1007/978-3-030-66891-4  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)