Technologies and Applications for Big Data Value

This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The b...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Curry, Edward (Editor), Auer, Sören (Editor), Berre, Arne J. (Editor), Metzger, Andreas (Editor), Perez, Maria S. (Editor), Zillner, Sonja (Editor)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-78307-5
003 DE-He213
005 20240312121352.0
007 cr nn 008mamaa
008 220428s2022 sz | s |||| 0|eng d
020 |a 9783030783075  |9 978-3-030-78307-5 
024 7 |a 10.1007/978-3-030-78307-5  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 6,312  |2 23 
245 1 0 |a Technologies and Applications for Big Data Value  |h [electronic resource] /  |c edited by Edward Curry, Sören Auer, Arne J. Berre, Andreas Metzger, Maria S. Perez, Sonja Zillner. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XXIV, 544 p. 176 illus., 164 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Technologies and Applications for Big Data Value -- Part I: Technologies and Methods -- Trade-Offs and Challenges of Serverless Data Analytics -- Big Data and AI Pipeline Framework: Technology Analysis from a Benchmarking Perspective -- An Elastic Software Architecture for Extreme-Scale Big Data Analytics -- Privacy-Preserving Technologies for Trusted Data Spaces -- Leveraging Data-Driven Infrastructure Management to Facilitate AIOps for Big Data Applications and Operations -- Leveraging High-Performance Computing and Cloud Computing with Unified Big-DataWorkflows: The LEXIS Project -- Part II: Processes and Applications -- The DeepHealth Toolkit: A Key European Free and Open-Source Software for Deep Learning and Computer Vision Ready to Exploit Heterogeneous HPC and Cloud Architectures -- Applying AI to Manage Acute and Chronic Clinical Condition -- 3D Human Big Data Exchange Between the Healthcare and Garment Sectors -- Using a Legal Knowledge Graph for Multilingual Compliance Services in Labor Law, Contract Management, and Geothermal Energy -- Big Data Analytics in the Banking Sector: Guidelines and Lessons Learned from the CaixaBank Case -- Data-Driven Artificial Intelligence and Predictive Analytics for the Maintenance of Industrial Machinery with Hybrid and Cognitive Digital Twins -- Big Data Analytics in the Manufacturing Sector: Guidelines and Lessons Learned Through the Centro Ricerche FIAT (CRF) Case -- Next-Generation Big Data-Driven Factory 4.0 Operations and Optimization: The Boost 4.0 Experience -- Big Data-Driven Industry 4.0 Service Engineering Large-Scale Trials: The Boost 4.0 Experience -- Model-Based Engineering and Semantic Interoperability for Trusted Digital Twins Big Data Connection Across the Product Lifecycle -- A Data SciencePipeline for Big Linked Earth Observation Data -- Towards Cognitive Ports of the Futures -- Distributed Big Data Analytics in a Smart City -- Processing Big Data in Motion: Core Components and System Architectures with Applications to the Maritime Domain -- Knowledge Modeling and Incident Analysis for Special Cargo. 
506 0 |a Open Access 
520 |a This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part "Technologies and Methods" contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part "Processes and Applications" details experience reports and lessons from using big data and data-driven approaches in processes and applications.Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems. 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Quantitative research. 
650 0 |a Application software. 
650 0 |a Expert systems (Computer science). 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Big Data. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Knowledge Based Systems. 
700 1 |a Curry, Edward.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Auer, Sören.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Berre, Arne J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Metzger, Andreas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Perez, Maria S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zillner, Sonja.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030783068 
776 0 8 |i Printed edition:  |z 9783030783082 
776 0 8 |i Printed edition:  |z 9783030783099 
856 4 0 |u https://doi.org/10.1007/978-3-030-78307-5  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)