Multivariate Statistical Machine Learning Methods for Genomic Prediction

This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the req...

Full description

Saved in:
Bibliographic Details
Main Authors: Montesinos López, Osval Antonio (Author), Montesinos López, Abelardo (Author), Crossa, José (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-89010-0
003 DE-He213
005 20240312131002.0
007 cr nn 008mamaa
008 220113s2022 sz | s |||| 0|eng d
020 |a 9783030890100  |9 978-3-030-89010-0 
024 7 |a 10.1007/978-3-030-89010-0  |2 doi 
050 4 |a S1-972 
072 7 |a TVB  |2 bicssc 
072 7 |a TEC003000  |2 bisacsh 
072 7 |a TVB  |2 thema 
082 0 4 |a 630  |2 23 
100 1 |a Montesinos López, Osval Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multivariate Statistical Machine Learning Methods for Genomic Prediction  |h [electronic resource] /  |c by Osval Antonio Montesinos López, Abelardo Montesinos López, José Crossa. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XXIV, 691 p. 113 illus., 61 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Chapter 1 -- General elements of genomic selection and statistical learning -- Chapter. 2 -- Preprocessing tools for data preparation -- Chapter. 3 -- Elements for building supervised statistical machine learning models -- Chapter. 4 -- Overfitting, model tuning and evaluation of prediction performance -- Chapter. 5 -- Linear Mixed Models -- Chapter. 6 -- Bayesian Genomic Linear Regression -- Chapter. 7 -- Bayesian and classical prediction models for categorical and count data -- Chapter. 8 -- Reproducing Kernel Hilbert Spaces Regression and Classification Methods -- Chapter. 9 -- Support vector machines and support vector regression -- Chapter. 10 -- Fundamentals of artificial neural networks and deep learning -- Chapter. 11 -- Artificial neural networks and deep learning for genomic prediction of continuous outcomes -- Chapter. 12 -- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes -- Chapter. 13 -- Convolutional neural networks -- Chapter. 14 -- Functional regression -- Chapter. 15 -- Random forest for genomic prediction. 
506 0 |a Open Access 
520 |a This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool. 
650 0 |a Agriculture. 
650 0 |a Bioinformatics. 
650 0 |a Plant genetics. 
650 0 |a Agricultural genome mapping. 
650 0 |a Biometry. 
650 1 4 |a Agriculture. 
650 2 4 |a Bioinformatics. 
650 2 4 |a Plant Genetics. 
650 2 4 |a Agricultural Genetics. 
650 2 4 |a Biostatistics. 
700 1 |a Montesinos López, Abelardo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Crossa, José.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030890094 
776 0 8 |i Printed edition:  |z 9783030890117 
776 0 8 |i Printed edition:  |z 9783030890124 
856 4 0 |u https://doi.org/10.1007/978-3-030-89010-0  |z Link to Metadata 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
912 |a ZDB-2-SOB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)