Regularized System Identification Learning Dynamic Models from Data /
This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learn...
Сохранить в:
Главные авторы: | Pillonetto, Gianluigi (Автор), Chen, Tianshi (Автор), Chiuso, Alessandro (Автор), De Nicolao, Giuseppe (Автор), Ljung, Lennart (Автор) |
---|---|
Соавтор: | SpringerLink (Online service) |
Формат: | Электронный ресурс eКнига |
Язык: | английский |
Опубликовано: |
Cham :
Springer International Publishing : Imprint: Springer,
2022.
|
Редактирование: | 1st ed. 2022. |
Серии: | Communications and Control Engineering,
|
Предметы: | |
Online-ссылка: | Link to Metadata |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
Схожие документы
-
Regularized System Identification Learning Dynamic Models from Data
по: Pillonetto, Gianluigi
Опубликовано: (2022) -
Regularized System Identification Learning Dynamic Models from Data
по: Pillonetto, Gianluigi
Опубликовано: (2022) -
Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection
по: Zhou, Xuefeng, и др.
Опубликовано: (2020) -
Efficient Reinforcement Learning using Gaussian Processes
по: Deisenroth, Marc Peter
Опубликовано: (2010) -
Twin-Control A Digital Twin Approach to Improve Machine Tools Lifecycle /
Опубликовано: (2019)