Data Assimilation Fundamentals A Unified Formulation of the State and Parameter Estimation Problem /

This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts fro...

Full description

Saved in:
Bibliographic Details
Main Authors: Evensen, Geir (Author), Vossepoel, Femke C. (Author), van Leeuwen, Peter Jan (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Series:Springer Textbooks in Earth Sciences, Geography and Environment,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-96709-3
003 DE-He213
005 20220422120033.0
007 cr nn 008mamaa
008 220422s2022 sz | s |||| 0|eng d
020 |a 9783030967093  |9 978-3-030-96709-3 
024 7 |a 10.1007/978-3-030-96709-3  |2 doi 
050 4 |a GB3-5030 
072 7 |a RB  |2 bicssc 
072 7 |a SCI019000  |2 bisacsh 
072 7 |a RB  |2 thema 
082 0 4 |a 550  |2 23 
082 0 4 |a 910.02  |2 23 
100 1 |a Evensen, Geir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Assimilation Fundamentals  |h [electronic resource] :  |b A Unified Formulation of the State and Parameter Estimation Problem /  |c by Geir Evensen, Femke C. Vossepoel, Peter Jan van Leeuwen. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XIX, 245 p. 63 illus., 62 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Textbooks in Earth Sciences, Geography and Environment,  |x 2510-1315 
505 0 |a Introduction -- Part I Mathematical Formulation: Problem formulation -- Maximum a posteriori solution -- Strong-constraint 4DVar -- Weak constraint 4DVar -- Kalman filters and 3DVar -- Randomized-maximum-likelihood sampling -- Low-rank ensemble methods -- Fully nonlinear data assimilation -- Localization and inflation -- Methods' summary -- Part II Examples and Applications: A Kalman filter with the Roessler model -- Linear EnKF update -- EnKF for an advection equation -- EnKF with the Lorenz equations -- 3Dvar and SC-4DVar for the Lorenz 63 model -- Representer method with an Ekman-flow model -- Comparison of methods on a scalar model -- Particle filter for seismic-cycle estimation -- Particle flow for a quasi-geostrophic model -- EnRML for history matching petroleum models -- ESMDA with a SARS-COV-2 pandemic model -- Final summary -- References -- Index. . 
506 0 |a Open Access 
520 |a This open-access textbook's significant contribution is the unified derivation of data-assimilation techniques from a common fundamental and optimal starting point, namely Bayes' theorem. Unique for this book is the "top-down" derivation of the assimilation methods. It starts from Bayes theorem and gradually introduces the assumptions and approximations needed to arrive at today's popular data-assimilation methods. This strategy is the opposite of most textbooks and reviews on data assimilation that typically take a bottom-up approach to derive a particular assimilation method. E.g., the derivation of the Kalman Filter from control theory and the derivation of the ensemble Kalman Filter as a low-rank approximation of the standard Kalman Filter. The bottom-up approach derives the assimilation methods from different mathematical principles, making it difficult to compare them. Thus, it is unclear which assumptions are made to derive an assimilation method and sometimes even which problem it aspires to solve. The book's top-down approach allows categorizing data-assimilation methods based on the approximations used. This approach enables the user to choose the most suitable method for a particular problem or application. Have you ever wondered about the difference between the ensemble 4DVar and the "ensemble randomized likelihood" (EnRML) methods? Do you know the differences between the ensemble smoother and the ensemble-Kalman smoother? Would you like to understand how a particle flow is related to a particle filter? In this book, we will provide clear answers to several such questions. The book provides the basis for an advanced course in data assimilation. It focuses on the unified derivation of the methods and illustrates their properties on multiple examples. It is suitable for graduate students, post-docs, scientists, and practitioners working in data assimilation. 
650 0 |a Physical geography. 
650 0 |a Statistics . 
650 0 |a Sampling (Statistics). 
650 1 4 |a Earth System Sciences. 
650 2 4 |a Applied Statistics. 
650 2 4 |a Methodology of Data Collection and Processing. 
650 2 4 |a Bayesian Inference. 
700 1 |a Vossepoel, Femke C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a van Leeuwen, Peter Jan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030967086 
776 0 8 |i Printed edition:  |z 9783030967109 
776 0 8 |i Printed edition:  |z 9783030967116 
830 0 |a Springer Textbooks in Earth Sciences, Geography and Environment,  |x 2510-1315 
856 4 0 |u https://doi.org/10.1007/978-3-030-96709-3  |z Link to Metadata 
912 |a ZDB-2-EES 
912 |a ZDB-2-SXEE 
912 |a ZDB-2-SOB 
950 |a Earth and Environmental Science (SpringerNature-11646) 
950 |a Earth and Environmental Science (R0) (SpringerNature-43711)