The Road to General Intelligence

Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intellige...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Swan, Jerry (Autor), Nivel, Eric (Autor), Kant, Neel (Autor), Hedges, Jules (Autor), Atkinson, Timothy (Autor), Steunebrink, Bas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Lenguaje:inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edición:1st ed. 2022.
Colección:Studies in Computational Intelligence, 1049
Materias:
Acceso en línea:Link to Metadata
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-08020-3
003 DE-He213
005 20240322050633.0
007 cr nn 008mamaa
008 220622s2022 sz | s |||| 0|eng d
020 |a 9783031080203  |9 978-3-031-08020-3 
024 7 |a 10.1007/978-3-031-08020-3  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Swan, Jerry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Road to General Intelligence  |h [electronic resource] /  |c by Jerry Swan, Eric Nivel, Neel Kant, Jules Hedges, Timothy Atkinson, Bas Steunebrink. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XIV, 136 p. 26 illus., 18 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 1049 
505 0 |a Introduction -- Challenges for Deep Learning -- Challenges for Reinforcement Learning -- Work on Command: The Case for Generality -- Architecture. 
506 0 |a Open Access 
520 |a Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century.We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering  |x Data processing. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Engineering. 
700 1 |a Nivel, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Kant, Neel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hedges, Jules.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Atkinson, Timothy.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Steunebrink, Bas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031080197 
776 0 8 |i Printed edition:  |z 9783031080210 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 1049 
856 4 0 |u https://doi.org/10.1007/978-3-031-08020-3  |z Link to Metadata 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
912 |a ZDB-2-SOB 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)