Bayes Factors for Forensic Decision Analyses with R

Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability-keeping theor...

Full description

Saved in:
Bibliographic Details
Main Authors: Bozza, Silvia (Author), Taroni, Franco (Author), Biedermann, Alex (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Series:Springer Texts in Statistics,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-09839-0
003 DE-He213
005 20230810175656.0
007 cr nn 008mamaa
008 221031s2022 sz | s |||| 0|eng d
020 |a 9783031098390  |9 978-3-031-09839-0 
024 7 |a 10.1007/978-3-031-09839-0  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Bozza, Silvia.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayes Factors for Forensic Decision Analyses with R  |h [electronic resource] /  |c by Silvia Bozza, Franco Taroni, Alex Biedermann. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XII, 187 p. 22 illus., 5 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Texts in Statistics,  |x 2197-4136 
505 0 |a Chapter 1: Introduction to the Bayes factor and decision analysis -- Chapter 2: Bayes factor for model choice -- Chapter 3: Bayes factor for evaluative purposes -- Chapter 4: Bayes factor for investigative purposes. 
506 0 |a Open Access 
520 |a Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability-keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics: Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence. Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law. Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context. Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information-scientific evidence-ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty. This book would be relevant to students, practitioners, and applied statisticians interested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes. This book is Open Access. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics  |x Data processing. 
650 0 |a Forensic sciences. 
650 0 |a Medical jurisprudence. 
650 0 |a Forensic psychology. 
650 0 |a Social sciences  |x Statistical methods. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Forensic Science. 
650 2 4 |a Forensic Medicine. 
650 2 4 |a Forensic Psychology. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
700 1 |a Taroni, Franco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Biedermann, Alex.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031098383 
776 0 8 |i Printed edition:  |z 9783031098406 
776 0 8 |i Printed edition:  |z 9783031098413 
830 0 |a Springer Texts in Statistics,  |x 2197-4136 
856 4 0 |u https://doi.org/10.1007/978-3-031-09839-0  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)