Handbook of Computational Social Science for Policy

This open access handbook describes foundational issues, methodological approaches and examples on how to analyse and model data using Computational Social Science (CSS) for policy support. Up to now, CSS studies have mostly developed on a small, proof-of concept, scale that prevented from unleashin...

Fuld beskrivelse

Saved in:
Bibliografiske detaljer
Institution som forfatter: SpringerLink (Online service)
Andre forfattere: Bertoni, Eleonora (Editor), Fontana, Matteo (Editor), Gabrielli, Lorenzo (Editor), Signorelli, Serena (Editor), Vespe, Michele (Editor)
Format: Electronisk eBog
Sprog:engelsk
Udgivet: Cham : Springer International Publishing : Imprint: Springer, 2023.
Udgivelse:1st ed. 2023.
Fag:
Online adgang:Link to Metadata
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-16624-2
003 DE-He213
005 20240312115124.0
007 cr nn 008mamaa
008 230123s2023 sz | s |||| 0|eng d
020 |a 9783031166242  |9 978-3-031-16624-2 
024 7 |a 10.1007/978-3-031-16624-2  |2 doi 
050 4 |a Q336 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.7  |2 23 
245 1 0 |a Handbook of Computational Social Science for Policy  |h [electronic resource] /  |c edited by Eleonora Bertoni, Matteo Fontana, Lorenzo Gabrielli, Serena Signorelli, Michele Vespe. 
250 |a 1st ed. 2023. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2023. 
300 |a XXI, 490 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
506 0 |a Open Access 
520 |a This open access handbook describes foundational issues, methodological approaches and examples on how to analyse and model data using Computational Social Science (CSS) for policy support. Up to now, CSS studies have mostly developed on a small, proof-of concept, scale that prevented from unleashing its potential to provide systematic impact to the policy cycle, as well as from improving the understanding of societal problems to the definition, assessment, evaluation, and monitoring of policies. The aim of this handbook is to fill this gap by exploring ways to analyse and model data for policy support, and to advocate the adoption of CSS solutions for policy by raising awareness of existing implementations of CSS in policy-relevant fields. To this end, the book explores applications of computational methods and approaches like big data, machine learning, statistical learning, sentiment analysis, text mining, systems modelling, and network analysis to different problemsin the social sciences. The book is structured into three Parts: the first chapters on foundational issues open with an exposition and description of key policymaking areas where CSS can provide insights and information. In detail, the chapters cover public policy, governance, data justice and other ethical issues. Part two consists of chapters on methodological aspects dealing with issues such as the modelling of complexity, natural language processing, validity and lack of data, and innovation in official statistics. Finally, Part three describes the application of computational methods, challenges and opportunities in various social science areas, including economics, sociology, demography, migration, climate change, epidemiology, geography, and disaster management. The target audience of the book spans from the scientific community engaged in CSS research to policymakers interested in evidence-informed policy interventions, but also includes private companies holding datathat can be used to study social sciences and are interested in achieving a policy impact. 
650 0 |a Artificial intelligence  |x Data processing. 
650 0 |a Quantitative research. 
650 0 |a Sociology  |x Methodology. 
650 0 |a Machine learning. 
650 1 4 |a Data Science. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Sociological Methods. 
650 2 4 |a Machine Learning. 
700 1 |a Bertoni, Eleonora.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Fontana, Matteo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gabrielli, Lorenzo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Signorelli, Serena.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vespe, Michele.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031166235 
776 0 8 |i Printed edition:  |z 9783031166259 
776 0 8 |i Printed edition:  |z 9783031166266 
856 4 0 |u https://doi.org/10.1007/978-3-031-16624-2  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)