Twisted Isospectrality, Homological Wideness, and Isometry A Sample of Algebraic Methods in Isospectrality /

The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether on...

Full description

Saved in:
Bibliographic Details
Main Authors: Cornelissen, Gunther (Author), Peyerimhoff, Norbert (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Series:SpringerBriefs in Mathematics,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-27704-7
003 DE-He213
005 20231230001219.0
007 cr nn 008mamaa
008 230510s2023 sz | s |||| 0|eng d
020 |a 9783031277047  |9 978-3-031-27704-7 
024 7 |a 10.1007/978-3-031-27704-7  |2 doi 
050 4 |a QA614-614.97 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Cornelissen, Gunther.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Twisted Isospectrality, Homological Wideness, and Isometry  |h [electronic resource] :  |b A Sample of Algebraic Methods in Isospectrality /  |c by Gunther Cornelissen, Norbert Peyerimhoff. 
250 |a 1st ed. 2023. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2023. 
300 |a XVI, 111 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Chapter. 1. Introduction -- Part I: Leitfaden -- Chapter. 2. Manifold and orbifold constructions -- Chapter. 3. Spectra, group representations and twisted Laplacians -- Chapter. 4. Detecting representation isomorphism through twisted spectra -- Chapter. 5. Representations with a unique monomial structure -- Chapter. 6. Construction of suitable covers and proof of the main theorem -- Chapter. 7. Geometric construction of the covering manifold -- Chapter. 8. Homological wideness -- Chapter. 9. Examples of homologically wide actions -- Chapter. 10. Homological wideness, "class field theory" for covers, and a number theoretical analogue -- Chapter. 11. Examples concerning the main result -- Chapter. 12. Length spectrum -- References -- Index. 
506 0 |a Open Access 
520 |a The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether one can find finitely many natural operators that determine whether two such manifolds are isometric (coverings). The methods outlined in the book fit into the tradition of the famous work of Sunada on the construction of isospectral, non-isometric manifolds, and thus do not focus on analytic techniques, but rather on algebraic methods: in particular, the analogy with constructions in number theory, methods from representation theory, and from algebraic topology. The main goal of the book is to present the construction of finitely many "twisted" Laplace operators whose spectrum determines covering equivalence of two Riemannian manifolds. The book has a leisure pace and presents details and examples that are hard to find in the literature, concerning: fiber products of manifolds and orbifolds, the distinction between the spectrum and the spectral zeta function for general operators, strong isospectrality, twisted Laplacians, the action of isometry groups on homology groups, monomial structures on group representations, geometric and group-theoretical realisation of coverings with wreath products as covering groups, and "class field theory" for manifolds. The book contains a wealth of worked examples and open problems. After perusing the book, the reader will have a comfortable working knowledge of the algebraic approach to isospectrality. This is an open access book. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Number theory. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 0 |a Geometry, Differential. 
650 1 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Number Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Differential Geometry. 
700 1 |a Peyerimhoff, Norbert.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031277030 
776 0 8 |i Printed edition:  |z 9783031277054 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.org/10.1007/978-3-031-27704-7  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)