Core Concepts and Methods in Load Forecasting With Applications in Distribution Networks /

This comprehensive open access book enables readers to discover the essential techniques for load forecasting in electricity networks, particularly for active distribution networks. From statistical methods to deep learning and probabilistic approaches, the book covers a wide range of techniques and...

Full description

Saved in:
Bibliographic Details
Main Authors: Haben, Stephen (Author), Voss, Marcus (Author), Holderbaum, William (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-27852-5
003 DE-He213
005 20230430133334.0
007 cr nn 008mamaa
008 230430s2023 sz | s |||| 0|eng d
020 |a 9783031278525  |9 978-3-031-27852-5 
024 7 |a 10.1007/978-3-031-27852-5  |2 doi 
050 4 |a TK1001-1841 
072 7 |a TH  |2 bicssc 
072 7 |a TEC031000  |2 bisacsh 
072 7 |a THY  |2 thema 
082 0 4 |a 621.319  |2 23 
100 1 |a Haben, Stephen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Core Concepts and Methods in Load Forecasting  |h [electronic resource] :  |b With Applications in Distribution Networks /  |c by Stephen Haben, Marcus Voss, William Holderbaum. 
250 |a 1st ed. 2023. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2023. 
300 |a XV, 331 p. 139 illus., 89 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Introduction -- Chapter 2. Primer on Distribution Electricity Networks -- Chapter 3. Primer on Statistics and Probability -- Chapter 4. Primer on Machine Learning -- Chapter 5. Time Series Forecasting: Core Concepts and Definitions -- Chapter 6. Load Data: Preparation, Analysis and Feature Generation -- Chapter 7. Verification and Evaluation of Load Forecast Models -- Chapter 8. Load Forecasting Model Training and Selection -- Chapter 9. Benchmark and Statistical Point Forecast Methods -- Chapter 10. Machine Learning Point Forecasts Methods -- Chapter 11. Probabilistic Forecast Methods -- Chapter 12. Load Forecast Process -- Chapter 13. Advanced and Additional Topics -- Chapter 14. Case Study: Low Voltage Demand Forecasts -- Chapter 15. Selected Applications and Examples -- Appendix. 
506 0 |a Open Access 
520 |a This comprehensive open access book enables readers to discover the essential techniques for load forecasting in electricity networks, particularly for active distribution networks. From statistical methods to deep learning and probabilistic approaches, the book covers a wide range of techniques and includes real-world applications and a worked examples using actual electricity data (including an example implemented through shared code). Advanced topics for further research are also included, as well as a detailed appendix on where to find data and additional reading. As the smart grid and low carbon economy continue to evolve, the proper development of forecasting methods is vital. This book is a must-read for students, industry professionals, and anyone interested in forecasting for smart control applications, demand-side response, energy markets, and renewable utilization. 
650 0 |a Electric power-plants. 
650 0 |a Probabilities. 
650 0 |a Electric power production. 
650 0 |a Neural circuitry. 
650 0 |a Energy storage. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Power Stations. 
650 2 4 |a Applied Probability. 
650 2 4 |a Electrical Power Engineering. 
650 2 4 |a Neural Circuits. 
650 2 4 |a Mechanical and Thermal Energy Storage. 
650 2 4 |a Control, Robotics, Automation. 
700 1 |a Voss, Marcus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Holderbaum, William.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031278518 
776 0 8 |i Printed edition:  |z 9783031278532 
776 0 8 |i Printed edition:  |z 9783031278549 
856 4 0 |u https://doi.org/10.1007/978-3-031-27852-5  |z Link to Metadata 
912 |a ZDB-2-ENE 
912 |a ZDB-2-SXEN 
912 |a ZDB-2-SOB 
950 |a Energy (SpringerNature-40367) 
950 |a Energy (R0) (SpringerNature-43717)