Differential Geometry From Elastic Curves to Willmore Surfaces /

This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Pinkall, Ulrich (Author), Gross, Oliver (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Birkhäuser, 2024.
Edition:1st ed. 2024.
Series:Compact Textbooks in Mathematics,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-39838-4
003 DE-He213
005 20240213224221.0
007 cr nn 008mamaa
008 240213s2024 sz | s |||| 0|eng d
020 |a 9783031398384  |9 978-3-031-39838-4 
024 7 |a 10.1007/978-3-031-39838-4  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Pinkall, Ulrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Differential Geometry  |h [electronic resource] :  |b From Elastic Curves to Willmore Surfaces /  |c by Ulrich Pinkall, Oliver Gross. 
250 |a 1st ed. 2024. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2024. 
300 |a XI, 203 p. 80 illus., 66 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Compact Textbooks in Mathematics,  |x 2296-455X 
506 0 |a Open Access 
520 |a This open access book covers the main topics for a course on the differential geometry of curves and surfaces. Unlike the common approach in existing textbooks, there is a strong focus on variational problems, ranging from elastic curves to surfaces that minimize area, or the Willmore functional. Moreover, emphasis is given on topics that are useful for applications in science and computer graphics. Most often these applications are concerned with finding the shape of a curve or a surface that minimizes physically meaningful energy. Manifolds are not introduced as such, but the presented approach provides preparation and motivation for a follow-up course on manifolds, and topics like the Gauss-Bonnet theorem for compact surfaces are covered. 
650 0 |a Geometry, Differential. 
650 1 4 |a Differential Geometry. 
700 1 |a Gross, Oliver.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031398377 
776 0 8 |i Printed edition:  |z 9783031398391 
830 0 |a Compact Textbooks in Mathematics,  |x 2296-455X 
856 4 0 |u https://doi.org/10.1007/978-3-031-39838-4  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)