Stochastic Transport in Upper Ocean Dynamics II STUOD 2022 Workshop, London, UK, September 26-29 /

This open access proceedings volume brings selected, peer-reviewed contributions presented at the Third Stochastic Transport in Upper Ocean Dynamics (STUOD) 2022 Workshop, held virtually and in person at the Imperial College London, UK, September 26-29, 2022. The STUOD project is supported by an ERC...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Erakunde egilea: SpringerLink (Online service)
Beste egile batzuk: Chapron, Bertrand (Argitaratzailea), Crisan, Dan (Argitaratzailea), Holm, Darryl (Argitaratzailea), Mémin, Etienne (Argitaratzailea), Radomska, Anna (Argitaratzailea)
Formatua: Baliabide elektronikoa eBook
Hizkuntza:ingelesa
Argitaratua: Cham : Springer Nature Switzerland : Imprint: Springer, 2024.
Edizioa:1st ed. 2024.
Saila:Mathematics of Planet Earth, 11
Gaiak:
Sarrera elektronikoa:Link to Metadata
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
Aurkibidea:
  • Internal tides energy transfers and interactions with the mesoscale circulation in two contrasted areas of the North Atlantic
  • Sparse-stochastic model reduction for 2D Euler equations
  • Effect of Transport Noise on Kelvin-Helmholtz instability
  • On the 3D Navier-Stokes Equations with Stochastic Lie Transport
  • On the interactions between mean flows and inertial gravity waves in the WKB approximation
  • Toward a stochastic parameterization for oceanic deep convection
  • Comparison of Stochastic Parametrization Schemes using Data Assimilation on Triad Models
  • An explicit method to determine Casimirs in 2D geophysical flows
  • Correlated structures in a balanced motion interacting with an internal wave
  • Linear wave solutions of a stochastic shallow water model
  • Analysis of Sea Surface Temperature variability using machine learning
  • Data assimilation: A dynamic homotopy-based coupling approach
  • Constrained random diffeomorphisms for data assimilation
  • Stochastic compressible Navier-Stokes equations under location uncertainty
  • Data driven stochastic primitive equations with dynamic modes decomposition.