Metric Algebraic Geometry

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive i...

Full description

Saved in:
Bibliographic Details
Main Authors: Breiding, Paul (Author), Kohn, Kathlén (Author), Sturmfels, Bernd (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer Nature Switzerland : Imprint: Birkhäuser, 2024.
Edition:1st ed. 2024.
Series:Oberwolfach Seminars, 53
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-51462-3
003 DE-He213
005 20240227173513.0
007 cr nn 008mamaa
008 240227s2024 sz | s |||| 0|eng d
020 |a 9783031514623  |9 978-3-031-51462-3 
024 7 |a 10.1007/978-3-031-51462-3  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Breiding, Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Metric Algebraic Geometry  |h [electronic resource] /  |c by Paul Breiding, Kathlén Kohn, Bernd Sturmfels. 
250 |a 1st ed. 2024. 
264 1 |a Cham :  |b Springer Nature Switzerland :  |b Imprint: Birkhäuser,  |c 2024. 
300 |a XIV, 215 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 53 
505 0 |a Preface -- Historical Snapshot -- Critical Equations -- Computations -- Polar Degrees -- Wasserstein Distance -- Curvature -- Reach and Offset -- Voronoi Cells -- Condition Numbers -- Machine Learning -- Maximum Likelihood -- Tensors -- Computer Vision -- Volumes of Semialgebraic Sets -- Sampling -- References. 
506 0 |a Open Access 
520 |a Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances. After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety. This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an open access book. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry, Differential. 
650 0 |a Artificial intelligence  |x Data processing. 
650 0 |a Numerical analysis. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Data Science. 
650 2 4 |a Numerical Analysis. 
700 1 |a Kohn, Kathlén.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sturmfels, Bernd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031514616 
776 0 8 |i Printed edition:  |z 9783031514630 
830 0 |a Oberwolfach Seminars,  |x 2296-5041 ;  |v 53 
856 4 0 |u https://doi.org/10.1007/978-3-031-51462-3  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)