Manifold Learning Model Reduction in Engineering /

This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understandi...

Full description

Saved in:
Bibliographic Details
Main Authors: Ryckelynck, David (Author), Casenave, Fabien (Author), Akkari, Nissrine (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer Nature Switzerland : Imprint: Springer, 2024.
Edition:1st ed. 2024.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-52764-7
003 DE-He213
005 20240313122633.0
007 cr nn 008mamaa
008 240220s2024 sz | s |||| 0|eng d
020 |a 9783031527647  |9 978-3-031-52764-7 
024 7 |a 10.1007/978-3-031-52764-7  |2 doi 
050 4 |a Q325.5-.7 
072 7 |a UYQM  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.31  |2 23 
100 1 |a Ryckelynck, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Manifold Learning  |h [electronic resource] :  |b Model Reduction in Engineering /  |c by David Ryckelynck, Fabien Casenave, Nissrine Akkari. 
250 |a 1st ed. 2024. 
264 1 |a Cham :  |b Springer Nature Switzerland :  |b Imprint: Springer,  |c 2024. 
300 |a X, 107 p. 31 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Structured Data and Knowledge in Model-based Engineering -- Learning Projection-based Reduced-order Models -- Error Estimation -- Resources: Software and Tutorials -- Industrial Application: Uncertainty Quantification in Lifetime Prediction of Turbine Blades -- Applications and Extensions: A Survey of Literature. 
506 0 |a Open Access 
520 |a This Open Access book reviews recent theoretical and numerical developments in nonlinear model order reduction in continuum mechanics, being addressed to Master and PhD students, as well as to researchers, lecturers and instructors. The aim of the authors is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms. The book involves a survey of key methods of model order reduction applied to model-based engineering and digital twining, by learning linear or nonlinear latent spaces. Projection-based reduced order models are the projection of mechanical equations on a latent space that have been learnt from both synthetic data and experimental data. Various descriptions and representations of structured data for model reduction are presented in the applications and survey chapters. Image-based digital twins are developed in a reduced setting. Reduced order models of as-manufactured components predict the mechanical effects of shape variations. A similar workflow is extended to multiphysics or coupled problems, with high dimensional input fields. Practical techniques are proposed for data augmentation and also for hyper-reduction, which is a key point to speed up projection-based model order reduction of finite element models. The book gives access to python libraries available on gitlab.com, which have been developed as part of the research program [FUI-25] MORDICUS funded by the French government. Similarly to deep learning for computer vision, deep learning for model order reduction circumvents the need to design parametric problems prior reducing models. Such an approach is highly relevant for image-base modelling or multiphysics modelling. 
650 0 |a Machine learning. 
650 0 |a Stochastic models. 
650 0 |a Thermodynamics. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Mathematical physics. 
650 1 4 |a Machine Learning. 
650 2 4 |a Statistical Learning. 
650 2 4 |a Stochastic Modelling. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
650 2 4 |a Industrial and Production Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Casenave, Fabien.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Akkari, Nissrine.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031527630 
776 0 8 |i Printed edition:  |z 9783031527654 
776 0 8 |i Printed edition:  |z 9783031527661 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.org/10.1007/978-3-031-52764-7  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)