IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency Intelligent Methods for the Factory of the Future /

This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality predictio...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Niggemann, Oliver (Editor), Schüller, Peter (Editor)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2018.
Edition:1st ed. 2018.
Series:Technologien für die intelligente Automation, Technologies for Intelligent Automation, 8
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-57805-6
003 DE-He213
005 20240312140600.0
007 cr nn 008mamaa
008 180820s2018 gw | s |||| 0|eng d
020 |a 9783662578056  |9 978-3-662-57805-6 
024 7 |a 10.1007/978-3-662-57805-6  |2 doi 
050 4 |a TH9701-9745 
072 7 |a TNKS  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
072 7 |a TNKS  |2 thema 
082 0 4 |a 621  |2 23 
245 1 0 |a IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency  |h [electronic resource] :  |b Intelligent Methods for the Factory of the Future /  |c edited by Oliver Niggemann, Peter Schüller. 
250 |a 1st ed. 2018. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2018. 
300 |a VII, 129 p. 52 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 8 
505 0 |a Concept and Implementation of a Software Architecture for Unifying Data Transfer in Automated Production Systems -- Social Science Contributions to Engineering Projects: Looking Beyond Explicit Knowledge Through the Lenses of Social Theory -- Enable learning of Hybrid Timed Automata in Absence of Discrete Events through Self-Organizing Maps -- Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps -- A Sampling-Based Method for Robust and Efficient Fault Detection in Industrial Automation Processes -- Validation of similarity measures for industrial alarm flood analysis -- Concept for Alarm Flood Reduction with Bayesian Networks by Identifying the Root Cause. 
506 0 |a Open Access 
520 |a This open access work presents selected results from the European research and innovation project IMPROVE which yielded novel data-based solutions to enhance machine reliability and efficiency in the fields of simulation and optimization, condition monitoring, alarm management, and quality prediction. The Editors Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo. Dr. Peter Schüller is postdoctoral researcher at Technische Universität Wien. His research interests are hybrid reasoning systems that combine Knowledge Representation and Machine Learning and applications in the fields of Cyber-Physical systems and Natural Language Processing. 
650 0 |a Security systems. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Computer input-output equipment. 
650 1 4 |a Security Science and Technology. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Input/Output and Data Communications. 
700 1 |a Niggemann, Oliver.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Schüller, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662578049 
776 0 8 |i Printed edition:  |z 9783662578063 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 8 
856 4 0 |u https://doi.org/10.1007/978-3-662-57805-6  |z Link to Metadata 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-SOB 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)