Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2018 /

This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyb...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Beyerer, Jürgen (Editor), Kühnert, Christian (Editor), Niggemann, Oliver (Editor)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2019.
Edition:1st ed. 2019.
Series:Technologien für die intelligente Automation, Technologies for Intelligent Automation, 9
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-58485-9
003 DE-He213
005 20240312132353.0
007 cr nn 008mamaa
008 181217s2019 gw | s |||| 0|eng d
020 |a 9783662584859  |9 978-3-662-58485-9 
024 7 |a 10.1007/978-3-662-58485-9  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning for Cyber Physical Systems  |h [electronic resource] :  |b Selected papers from the International Conference ML4CPS 2018 /  |c edited by Jürgen Beyerer, Christian Kühnert, Oliver Niggemann. 
250 |a 1st ed. 2019. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2019. 
300 |a VII, 136 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 9 
505 0 |a Machine Learning for Enhanced Waste Quantity Reduction: Insights from the MONSOON Industry 4.0 Project -- Deduction of time-dependent machine tool characteristics by fuzzy-clustering -- Unsupervised Anomaly Detection in Production Lines -- A Random Forest Based Classifer for Error Prediction of Highly Individualized Products -- Web-based Machine Learning Platform for Condition-Monitoring -- Selection and Application of Machine Learning-Algorithms in Production Quality -- Which deep artifificial neural network architecture to use for anomaly detection in Mobile Robots kinematic data -- GPU GEMM-Kernel Autotuning for scalable machine learners -- Process Control in a Press Hardening Production Line with Numerous Process Variables and Quality Criteria -- A Process Model for Enhancing Digital Assistance in Knowledge-Based Maintenance -- Detection of Directed Connectivities in Dynamic Systems for Different Excitation Signals using Spectral Granger Causality -- Enabling Self-Diagnosis of AutomationDevices through Industrial Analytics -- Making Industrial Analytics work for Factory Automation Applications -- Application of Reinforcement Learning in Production Planning and Control of Cyber Physical Production Systems -- LoRaWan for Smarter Management of Water Network: From metering to data analysis. 
506 0 |a Open Access 
520 |a This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. The Editors Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. Dr. ChristianKühnert is a senior researcher at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. His research interests are in the field of machine-learning, data-fusion and data-driven condition monitoring. Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo. 
650 0 |a Computational intelligence. 
650 0 |a Computer engineering. 
650 0 |a Computer networks . 
650 0 |a Telecommunication. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Computer Engineering and Networks. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Beyerer, Jürgen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kühnert, Christian.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Niggemann, Oliver.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662584842 
776 0 8 |i Printed edition:  |z 9783662584866 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 9 
856 4 0 |u https://doi.org/10.1007/978-3-662-58485-9  |z Link to Metadata 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
912 |a ZDB-2-SOB 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)