Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2020 /

This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains selected papers from the fifth international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020. Cyber P...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Beyerer, Jürgen (Editor), Maier, Alexander (Editor), Niggemann, Oliver (Editor)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer Vieweg, 2021.
Edition:1st ed. 2021.
Series:Technologien für die intelligente Automation, Technologies for Intelligent Automation, 13
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-3-662-62746-4
003 DE-He213
005 20240307114632.0
007 cr nn 008mamaa
008 201223s2021 gw | s |||| 0|eng d
020 |a 9783662627464  |9 978-3-662-62746-4 
024 7 |a 10.1007/978-3-662-62746-4  |2 doi 
050 4 |a TK7895.E42 
050 4 |a TK5105.8857 
072 7 |a TJF  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a GPFC  |2 thema 
082 0 4 |a 621.38  |2 23 
245 1 0 |a Machine Learning for Cyber Physical Systems  |h [electronic resource] :  |b Selected papers from the International Conference ML4CPS 2020 /  |c edited by Jürgen Beyerer, Alexander Maier, Oliver Niggemann. 
250 |a 1st ed. 2021. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer Vieweg,  |c 2021. 
300 |a VII, 130 p. 42 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 13 
505 0 |a Preface -- Energy Profile Prediction of Milling Processes Using Machine Learning Techniques -- Improvement of the prediction quality of electrical load profiles with artficial neural networks -- Detection and localization of an underwater docking station -- Deployment architecture for the local delivery of ML-Models to the industrial shop floor -- Deep Learning in Resource and Data Constrained Edge Computing Systems -- Prediction of Batch Processes Runtime Applying Dynamic Time Warping and Survival Analysis -- Proposal for requirements on industrial AI solutions -- Information modeling and knowledge extraction for machine learning applications in industrial production systems -- Explanation Framework for Intrusion Detection -- Automatic Generation of Improvement Suggestions for Legacy, PLC Controlled Manufacturing Equipment Utilizing Machine Learning -- Hardening Deep Neural Networks in Condition Monitoring Systems against Adversarial ExampleAttacks -- First Approaches to Automatically Diagnose and Reconfigure Hybrid Cyber-Physical Systems -- Machine learning for reconstruction of highly porous structures from FIB-SEM nano-tomographic data. 
506 0 |a Open Access 
520 |a This open access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains selected papers from the fifth international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Berlin, March 12-13, 2020. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. The Editors Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. Dr. Alexander Maier is head of group Machine Learning at Fraunhofer IOSB-INA. His focus is on the development of algorithms for big data applications in Cyber-Physical Systems (diagnostics, optimization, predictive maintenance) and the transfer of research results to industry. Prof. Oliver Niggemann got his doctorate in 2001 at the University of Paderborn with the topic "Visual Data Mining of Graph-Based Data". He then worked for almost 8 years in leading positions in the industry. From 2008-2019 he held a professorship at the Institute for Industrial Information Technologies (inIT) in Lemgo/Germany. Until 2019 Prof. Niggemann was also deputy head of the Fraunhofer IOSB-INA, which works in industrial automation. On April 1, 2019 Prof. Niggemann took over the university professorship "Computer Science in Mechanical Engineering" at the Helmut-Schmidt-University in Hamburg / Germany. There he does research at the Institute for Automation Technology IfA in the field of artificial intelligence and machine learning for cyber-physical systems. 
650 0 |a Cooperating objects (Computer systems). 
650 0 |a Telecommunication. 
650 0 |a Computer engineering. 
650 0 |a Computer networks . 
650 1 4 |a Cyber-Physical Systems. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Computer Engineering and Networks. 
700 1 |a Beyerer, Jürgen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maier, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Niggemann, Oliver.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662627457 
776 0 8 |i Printed edition:  |z 9783662627471 
830 0 |a Technologien für die intelligente Automation, Technologies for Intelligent Automation,  |x 2522-8587 ;  |v 13 
856 4 0 |u https://doi.org/10.1007/978-3-662-62746-4  |z Link to Metadata 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-SOB 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)