Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhou, Xuefeng (Author), Wu, Hongmin (Author), Rojas, Juan (Author), Xu, Zhihao (Author), Li, Shuai (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-15-6263-1
003 DE-He213
005 20240312122756.0
007 cr nn 008mamaa
008 200721s2020 si | s |||| 0|eng d
020 |a 9789811562631  |9 978-981-15-6263-1 
024 7 |a 10.1007/978-981-15-6263-1  |2 doi 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM1  |2 thema 
082 0 4 |a 629,892  |2 23 
100 1 |a Zhou, Xuefeng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection  |h [electronic resource] /  |c by Xuefeng Zhou, Hongmin Wu, Juan Rojas, Zhihao Xu, Shuai Li. 
250 |a 1st ed. 2020. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2020. 
300 |a XVII, 137 p. 50 illus., 44 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Robot Introspection -- Nonparametric Bayesian Modeling of Multimodal Time Series -- Incremental Learning Robot Complex Task Representation and Identification -- Nonparametric Bayesian Method for Robot Anomaly Monitoring -- Nonparametric Bayesian Method for Robot Anomaly Diagnose -- Learning Policy for Robot Anomaly Recovery based on Robot. 
506 0 |a Open Access 
520 |a This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students. 
650 0 |a Robotics. 
650 0 |a Statistics . 
650 0 |a Control engineering. 
650 0 |a Automation. 
650 0 |a Machine learning. 
650 0 |a Mathematical models. 
650 1 4 |a Robotic Engineering. 
650 2 4 |a Bayesian Inference. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Machine Learning. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
700 1 |a Wu, Hongmin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Rojas, Juan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Xu, Zhihao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Li, Shuai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811562624 
776 0 8 |i Printed edition:  |z 9789811562648 
776 0 8 |i Printed edition:  |z 9789811562655 
856 4 0 |u https://doi.org/10.1007/978-981-15-6263-1  |z Link to Metadata 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-SOB 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)