From Opinion Mining to Financial Argument Mining

Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent finan...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Chung-Chi (Author), Huang, Hen-Hsen (Author), Chen, Hsin-Hsi (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-16-2881-8
003 DE-He213
005 20240313103456.0
007 cr nn 008mamaa
008 210520s2021 si | s |||| 0|eng d
020 |a 9789811628818  |9 978-981-16-2881-8 
024 7 |a 10.1007/978-981-16-2881-8  |2 doi 
050 4 |a QA76.9.N38 
072 7 |a UYQL  |2 bicssc 
072 7 |a COM073000  |2 bisacsh 
072 7 |a UYQL  |2 thema 
082 0 4 |a 006.35  |2 23 
100 1 |a Chen, Chung-Chi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Opinion Mining to Financial Argument Mining  |h [electronic resource] /  |c by Chung-Chi Chen, Hen-Hsen Huang, Hsin-Hsi Chen. 
250 |a 1st ed. 2021. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2021. 
300 |a X, 95 p. 24 illus., 21 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Introduction -- Modeling Financial Opinions -- Sources and Corpora -- Organizing Financial Opinions -- Numerals in Financial Narratives -- FinTech Applications -- Perspectives and Conclusion. 
506 0 |a Open Access 
520 |a Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent financial technology (FinTech) development, some interdisciplinary researchers start to involve in the in-depth analysis of investors' opinions. These works indicate the trend toward fine-grained opinion mining in the financial domain. When expressing opinions in finance, terms like bullish/bearish often spring to mind. However, the market sentiment of the financial instrument is just one type of opinion in the financial industry. Like other industries such as manufacturing and textiles, the financial industry also has a large number of products. Financial services are also a major business for many financial companies, especially in the context of the recent FinTech trend. For instance, many commercial banks focus on loans and credit cards. Although there are a variety of issues that could be explored in the financial domain, most researchers in the AI and NLP communities only focus on the market sentiment of the stock or foreign exchange. This open access book addresses several research issues that can broaden the research topics in the AI community. It also provides an overview of the status quo in fine-grained financial opinion mining to offer insights into the futures goals. For a better understanding of the past and the current research, it also discusses the components of financial opinions one-by-one with the related works and highlights some possible research avenues, providing a research agenda with both micro- and macro-views toward financial opinions. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Data mining. 
650 0 |a Artificial intelligence  |x Data processing. 
650 0 |a Application software. 
650 0 |a Artificial intelligence. 
650 1 4 |a Natural Language Processing (NLP). 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Huang, Hen-Hsen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Chen, Hsin-Hsi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811628801 
776 0 8 |i Printed edition:  |z 9789811628825 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.org/10.1007/978-981-16-2881-8  |z Link to Metadata 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-SOB 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)