Artificial Intelligence Oceanography

This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The nu...

Full description

Saved in:
Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Li, Xiaofeng (Editor), Wang, Fan (Editor)
Format: Electronic eBook
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Subjects:
Online Access:Link to Metadata
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000005i 4500
001 978-981-19-6375-9
003 DE-He213
005 20230203112516.0
007 cr nn 008mamaa
008 230203s2023 si | s |||| 0|eng d
020 |a 9789811963759  |9 978-981-19-6375-9 
024 7 |a 10.1007/978-981-19-6375-9  |2 doi 
050 4 |a GC1-1581 
072 7 |a RBKC  |2 bicssc 
072 7 |a SCI052000  |2 bisacsh 
072 7 |a RBKC  |2 thema 
082 0 4 |a 551.46  |2 23 
245 1 0 |a Artificial Intelligence Oceanography  |h [electronic resource] /  |c edited by Xiaofeng Li, Fan Wang. 
250 |a 1st ed. 2023. 
264 1 |a Singapore :  |b Springer Nature Singapore :  |b Imprint: Springer,  |c 2023. 
300 |a XII, 346 p. 183 illus., 169 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Theory and technology of artificial intelligence for oceanography -- Satellite data-driven internal wave forecast model based on machine learning techniques -- Detection and analysis of marine macroalgae based on artificial intelligence -- Tropical cyclone intensity estimation from geostationary satellite imagery -- Reconstructing marine environmental data based on deep learning -- Detecting oceanic processes from space-borne sar imagery using machine learning -- Deep convolutional neural networks-based coastal inundation mapping for un-defined least developed countries: taking madagascar and mozambique as examples -- Ai- based mesoscale eddy study -- Classifying sea ice types from sar images based on deep fully convolutional networks -- Detecting ships and extracting ship's size from SAR images based on deep learning -- Quality control of ocean temperature and salinity data based on machine learning technology -- automatic extraction of internal wave signature from multiple satellite sensors based on deep convolutional neural networks -- Automatic extraction of waterlines from large-scale tidal flats on SAR images and applications based on deep convolutional neural networks -- Forecast of tropical instability waves using deep learning -- Sea surface height prediction based on artificial intelligence. 
506 0 |a Open Access 
520 |a This open access book invites readers to learn how to develop artificial intelligence (AI)-based algorithms to perform their research in oceanography. Various examples are exhibited to guide details of how to feed the big ocean data into the AI models to analyze and achieve optimized results. The number of scholars engaged in AI oceanography research will increase exponentially in the next decade. Therefore, this book will serve as a benchmark providing insights for scholars and graduate students interested in oceanography, computer science, and remote sensing. . 
650 0 |a Oceanography. 
650 0 |a Atmospheric science. 
650 0 |a Geographic information systems. 
650 0 |a Artificial intelligence. 
650 0 |a Sustainability. 
650 1 4 |a Ocean Sciences. 
650 2 4 |a Atmospheric Science. 
650 2 4 |a Geographical Information System. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Sustainability. 
700 1 |a Li, Xiaofeng.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wang, Fan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811963742 
776 0 8 |i Printed edition:  |z 9789811963766 
776 0 8 |i Printed edition:  |z 9789811963773 
856 4 0 |u https://doi.org/10.1007/978-981-19-6375-9  |z Link to Metadata 
912 |a ZDB-2-EES 
912 |a ZDB-2-SXEE 
912 |a ZDB-2-SOB 
950 |a Earth and Environmental Science (SpringerNature-11646) 
950 |a Earth and Environmental Science (R0) (SpringerNature-43711)