Linear Regression Using R An Introduction to Data Modeling

Linear Regression Using R: An Introduction to Data Modeling presents one of the fundamental data modeling techniques in an informal tutorial style. Learn how to predict system outputs from measured data using a detailed step-by-step process to develop, train, and test reliable regression models. Key...

Full description

Saved in:
Bibliographic Details
Main Author: Lilja, David J. (Author)
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] University of Minnesota Libraries Publishing [2016]
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0000399
003 MnU
005 20240122145154.0
006 m o d s
007 cr
008 180907s2016 mnu o 0 0 eng d
020 |a 9781946135001 
040 |a MnU  |b eng  |c MnU 
050 4 |a QA1 
050 4 |a QA37.3 
100 1 |a Lilja, David J.  |e author 
245 0 0 |a Linear Regression Using R  |b An Introduction to Data Modeling  |c David Lilja 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a [Place of publication not identified]  |b University of Minnesota Libraries Publishing  |c [2016] 
264 4 |c ©2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a 1 Introduction -- 1.1 What is a Linear Regression Model? -- 1.2 What is R? -- 1.3 What's Next? -- 2 Understand Your Data -- 2.1 Missing Values -- 2.2 Sanity Checking and Data Cleaning -- 2.3 The Example Data -- 2.4 Data Frames -- 2.5 Accessing a Data Frame -- 3 One-Factor Regression -- 3.1 Visualize the Data -- 3.2 The Linear Model Function -- 3.3 Evaluating the Quality of the Model -- 3.4 Residual Analysis -- 4 Multi-factor Regression -- 4.1 Visualizing the Relationships in the Data -- 4.2 Identifying Potential Predictors -- 4.3 The Backward Elimination Process -- 4.4 An Example of the Backward Elimination Process -- 4.5 Residual Analysis -- 4.6 When Things Go Wrong -- 5 Predicting Responses -- 5.1 Data Splitting for Training and Testing -- 5.2 Training and Testing -- 5.3 Predicting Across Data Sets -- 6 Reading Data into the R Environment -- 6.1 Reading CSV files -- 7 Summary8 A Few Things to Try NextBibliographyIndex 
520 0 |a Linear Regression Using R: An Introduction to Data Modeling presents one of the fundamental data modeling techniques in an informal tutorial style. Learn how to predict system outputs from measured data using a detailed step-by-step process to develop, train, and test reliable regression models. Key modeling and programming concepts are intuitively described using the R programming language. All of the necessary resources are freely available online. 
542 1 |f Attribution-NonCommercial 
546 |a In English. 
588 0 |a Description based on online resource 
650 0 |a Mathematics  |v Textbooks 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/399  |z Access online version