Yet Another Calculus Text

I intend this book to be, firstly, a introduction to calculus based on the hyperrealnumber system. In other words, I will use infinitesimal and infinite numbers freely. Just as most beginning calculus books provide no logical justification for the real number system, I will provide none for the hype...

Full description

Saved in:
Bibliographic Details
Main Author: Sloughter, Dan (Author)
Format: Electronic eBook
Language:English
Published: Greenville, South Carolina Dan Sloughter [2007]
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0000462
003 MnU
005 20240122145156.0
006 m o d s
007 cr
008 180907s2007 mnu o 0 0 eng d
040 |a MnU  |b eng  |c MnU 
050 4 |a QA1 
050 4 |a QA37.3 
050 4 |a QA150-272.5 
100 1 |a Sloughter, Dan  |e author 
245 0 0 |a Yet Another Calculus Text  |c Dan Sloughter 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a Greenville, South Carolina  |b Dan Sloughter  |c [2007] 
264 4 |c ©2007. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a 1 Derivatives -- 1.1 The arrow paradox -- 1.2 Rates of change -- 1.3 The hyperreals -- 1.4 Continuous functions -- 1.5 Properties of continuous functions -- 1.6 The derivative -- 1.7 Properties of derivatives -- 1.8 A geometric interpretation of the derivative -- 1.9 Increasing, decreasing, and local extrema -- 1.10 Optimization -- 1.11 Implicit differentiation and rates of change -- 1.12 Higher-order derivatives -- 2 Integrals -- 2.1 Integrals -- 2.2 Definite integrals -- 2.3 Properties of definite integrals -- 2.4 The fundamental theorem of integrals -- 2.5 Applications of definite integrals -- 2.6 Some techniques for evaluating integrals -- 2.7 The exponential and logarithm functions -- Answers to ExercisesIndex 
520 0 |a I intend this book to be, firstly, a introduction to calculus based on the hyperrealnumber system. In other words, I will use infinitesimal and infinite numbers freely. Just as most beginning calculus books provide no logical justification for the real number system, I will provide none for the hyperreals. The reader interested in questions of foundations should consult books such asAbraham Robinson's Non-standard Analysis or Robert Goldblatt's Lectures onthe Hyperreals. Secondly, I have aimed the text primarily at readers who already have somefamiliarity with calculus. Although the book does not explicitly assume any prerequisites beyond basic algebra and trigonometry, in practice the pace istoo fast for most of those without some acquaintance with the basic notions of calculus. 
542 1 |f Attribution-NonCommercial-ShareAlike 
546 |a In English. 
588 0 |a Description based on online resource 
650 0 |a Mathematics  |v Textbooks 
650 0 |a Calculus  |v Textbooks 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/462  |z Access online version