Advanced High School Statistics

We hope readers will take away three ideas from this book in addition to forming a foundationof statistical thinking and methods. (1) Statistics is an applied field with a wide range of practical applications. (2) You don't have to be a math guru to learn from real, interesting data. (3) Data a...

Full description

Saved in:
Bibliographic Details
Main Authors: Diez, David (Author), Barr, Christopher (Author), Çetinkaya-Rundel, Mine (Author), Dorazio, Leah (Author)
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] OpenIntro [2019]
Edition:2nd Edition
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0000552
003 MnU
005 20240122145158.0
006 m o d s
007 cr
008 180907s2019 mnu o 0 0 eng d
040 |a MnU  |b eng  |c MnU 
050 4 |a QA1 
050 4 |a QA37.3 
050 4 |a QA273-280 
100 1 |a Diez, David  |e author 
245 0 0 |a Advanced High School Statistics  |c David Diez 
250 |a 2nd Edition 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a [Place of publication not identified]  |b OpenIntro  |c [2019] 
264 4 |c ©2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a 1 Data collection -- 1.1 Case study -- 1.2 Data basics -- 1.3 Overview of data collection principles -- 1.4 Observational studies and sampling strategies -- 1.5 Experiments -- 2 Summarizing data -- 2.1 Examining numerical data -- 2.2 Numerical summaries and box plots -- 2.3 Considering categorical data -- 2.4 Case study: malaria vaccine (special topic) -- 3 Probability -- 3.1 Defining probability -- 3.2 Conditional probability -- 3.3 The binomial formula -- 3.4 Simulations -- 3.5 Random variables -- 3.6 Continuous distributions -- 4 Distributions of random variables -- 4.1 Normal distribution -- 4.2 Sampling distribution of a sample mean -- 4.3 Geometric distribution -- 4.4 Binomial distribution -- 4.5 Sampling distribution of a sample proportion -- 5 Foundation for inference -- 5.1 Estimating unknown parameters -- 5.2 Confidence intervals -- 5.3 Introducing hypothesis testing -- 5.4 Does it make sense? -- 6 Inference for categorical data -- 6.1 Inference for a single proportion -- 6.2 Difference of two proportions -- 6.3 Testing for goodness of fit using chi-square -- 6.4 Homogeneity and independence in two-way tables -- 7 Inference for numerical data -- 7.1 Inference for a mean with the t-distribution -- 7.2 Inference for paired data -- 7.3 Inference for the difference of two means -- 8 Introduction to linear regression -- 8.1 Line fitting, residuals, and correlation -- 8.2 Fitting a line by least squares regression -- 8.3 Inference for the slope of a regression line -- 8.4 Transformations for skewed data -- A Exercise solutions -- B Distribution tables -- C Distribution Tables -- D Calculator reference, Formulas, and Inference guide 
520 0 |a We hope readers will take away three ideas from this book in addition to forming a foundationof statistical thinking and methods. (1) Statistics is an applied field with a wide range of practical applications. (2) You don't have to be a math guru to learn from real, interesting data. (3) Data are messy, and statistical tools are imperfect. But, when you understand the strengths and weaknesses of these tools, you can use them to learn about the real world. Textbook overviewThe chapters of this book are as follows: 1. Data collection. Data structures, variables, and basic data collection techniques. 2. Summarizing data. Data summaries and graphics. 3. Probability. The basic principles of probability. 4. Distributions of random variables. Introduction to key distributions, and how the normal model applies to the sample mean and sample proportion. 5. Foundation for inference. General ideas for statistical inference in the context of estimating the population proportion. 6. Inference for categorical data. Inference for proportions using the normal and chisquare distributions. 7. Inference for numerical data. Inference for one or two sample means using the t distribution, and comparisons of many means using ANOVA. 8. Introduction to linear regression. An introduction to regression with two variables. Instructions are also provided in several sections for using Casio and TI calculators. 
542 1 |f Attribution-ShareAlike 
546 |a In English. 
588 0 |a Description based on print resource 
650 0 |a Mathematics  |v Textbooks 
650 0 |a Applied mathematics  |v Textbooks 
650 0 |a Statistics  |v Textbooks 
700 1 |a Barr, Christopher  |e author 
700 1 |a Çetinkaya-Rundel, Mine  |e author 
700 1 |a Dorazio, Leah  |e author 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/552  |z Access online version