The Crystal Ball Instruction Manual Volume One: Introduction to Data Science

A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and intr...

Full description

Saved in:
Bibliographic Details
Main Author: Davies, Stephen (Author)
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] University of Mary Washington [2020]
Edition:version 1.1
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0000915
003 MnU
005 20240122145212.0
006 m o d s
007 cr
008 200929s2020 mnu o 0 0 eng d
020 |a 9781715320041 
040 |a MnU  |b eng  |c MnU 
050 4 |a QA76 
050 4 |a QA76 
050 4 |a QA76 
245 0 4 |a The Crystal Ball Instruction Manual  |c Stephen Davies  |n Volume One: Introduction to Data Science 
250 |a version 1.1 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a [Place of publication not identified]  |b University of Mary Washington  |c [2020] 
264 4 |c ©2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a 1 Introduction -- 2 A trip to Jupyter -- 3 Three kinds of atomic data -- 4 Memory pictures -- 5 Calculations -- 6 Scales of measure -- 7 Three kinds of aggregate data -- 8 Arrays in Python (1 of 2) -- 9 Arrays in Python (2 of 2) -- 10 Interpreting Data -- 11 Assoc. arrays in Python (1 of 3) -- 12 Assoc. arrays in Python (2 of 3) -- 13 Assoc. arrays in Python (3 of 3) -- 14 Loops -- 15 EDA: univariate -- 16 Tables in Python (1 of 3) -- 17 Tables in Python (2 of 3) -- 18 Tables in Python (3 of 3) -- 19 EDA: bivariate (1 of 2) -- 20 EDA: bivariate (2 of 2) -- 21 Branching -- 22 Functions (1 of 2) -- 23 Functions (2 of 2) -- 24 Recoding and transforming -- 25 Machine Learning: concepts -- 26 Classification: concepts -- 27 Decision trees (1 of 2) -- 28 Decision trees (2 of 2) -- 29 Evaluating a classifier 
520 0 |a A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and introductory Python programming using open-source Jupyter Notebooks. This engaging read will allow any dedicated learner to build the skills necessary to contribute to the Data Science revolution, regardless of background. 
542 1 |f Attribution-ShareAlike 
546 |a In English. 
588 0 |a Description based on print resource 
650 0 |a Computer Science  |v Textbooks 
650 0 |a Artificial Intelligence  |v Textbooks 
650 0 |a Information technology  |v Textbooks 
650 0 |a Databases  |v Textbooks 
650 0 |a Programming Languages  |v Textbooks 
700 1 |a Davies, Stephen  |e author 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/915  |z Access online version