The Crystal Ball Instruction Manual Volume One: Introduction to Data Science
A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and intr...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Place of publication not identified]
University of Mary Washington
[2020]
|
Edition: | version 1.1 |
Series: | Open textbook library.
|
Subjects: | |
Online Access: | Access online version |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000nam a2200000 i 4500 | ||
---|---|---|---|
001 | OTLid0000915 | ||
003 | MnU | ||
005 | 20240122145212.0 | ||
006 | m o d s | ||
007 | cr | ||
008 | 200929s2020 mnu o 0 0 eng d | ||
020 | |a 9781715320041 | ||
040 | |a MnU |b eng |c MnU | ||
050 | 4 | |a QA76 | |
050 | 4 | |a QA76 | |
050 | 4 | |a QA76 | |
245 | 0 | 4 | |a The Crystal Ball Instruction Manual |c Stephen Davies |n Volume One: Introduction to Data Science |
250 | |a version 1.1 | ||
264 | 2 | |a Minneapolis, MN |b Open Textbook Library | |
264 | 1 | |a [Place of publication not identified] |b University of Mary Washington |c [2020] | |
264 | 4 | |c ©2020. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a Open textbook library. | |
505 | 0 | |a 1 Introduction -- 2 A trip to Jupyter -- 3 Three kinds of atomic data -- 4 Memory pictures -- 5 Calculations -- 6 Scales of measure -- 7 Three kinds of aggregate data -- 8 Arrays in Python (1 of 2) -- 9 Arrays in Python (2 of 2) -- 10 Interpreting Data -- 11 Assoc. arrays in Python (1 of 3) -- 12 Assoc. arrays in Python (2 of 3) -- 13 Assoc. arrays in Python (3 of 3) -- 14 Loops -- 15 EDA: univariate -- 16 Tables in Python (1 of 3) -- 17 Tables in Python (2 of 3) -- 18 Tables in Python (3 of 3) -- 19 EDA: bivariate (1 of 2) -- 20 EDA: bivariate (2 of 2) -- 21 Branching -- 22 Functions (1 of 2) -- 23 Functions (2 of 2) -- 24 Recoding and transforming -- 25 Machine Learning: concepts -- 26 Classification: concepts -- 27 Decision trees (1 of 2) -- 28 Decision trees (2 of 2) -- 29 Evaluating a classifier | |
520 | 0 | |a A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and introductory Python programming using open-source Jupyter Notebooks. This engaging read will allow any dedicated learner to build the skills necessary to contribute to the Data Science revolution, regardless of background. | |
542 | 1 | |f Attribution-ShareAlike | |
546 | |a In English. | ||
588 | 0 | |a Description based on print resource | |
650 | 0 | |a Computer Science |v Textbooks | |
650 | 0 | |a Artificial Intelligence |v Textbooks | |
650 | 0 | |a Information technology |v Textbooks | |
650 | 0 | |a Databases |v Textbooks | |
650 | 0 | |a Programming Languages |v Textbooks | |
700 | 1 | |a Davies, Stephen |e author | |
710 | 2 | |a Open Textbook Library |e distributor | |
856 | 4 | 0 | |u https://open.umn.edu/opentextbooks/textbooks/915 |z Access online version |