The Crystal Ball Instruction Manual Volume One: Introduction to Data Science
A perfect introduction to the exploding field of Data Science for the curious, first-time student. The author brings his trademark conversational tone to the important pillars of the discipline: exploratory data analysis, choices for structuring data, causality, machine learning principles, and intr...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Place of publication not identified]
University of Mary Washington
[2020]
|
Edition: | version 1.1 |
Series: | Open textbook library.
|
Subjects: | |
Online Access: | Access online version |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- 1 Introduction
- 2 A trip to Jupyter
- 3 Three kinds of atomic data
- 4 Memory pictures
- 5 Calculations
- 6 Scales of measure
- 7 Three kinds of aggregate data
- 8 Arrays in Python (1 of 2)
- 9 Arrays in Python (2 of 2)
- 10 Interpreting Data
- 11 Assoc. arrays in Python (1 of 3)
- 12 Assoc. arrays in Python (2 of 3)
- 13 Assoc. arrays in Python (3 of 3)
- 14 Loops
- 15 EDA: univariate
- 16 Tables in Python (1 of 3)
- 17 Tables in Python (2 of 3)
- 18 Tables in Python (3 of 3)
- 19 EDA: bivariate (1 of 2)
- 20 EDA: bivariate (2 of 2)
- 21 Branching
- 22 Functions (1 of 2)
- 23 Functions (2 of 2)
- 24 Recoding and transforming
- 25 Machine Learning: concepts
- 26 Classification: concepts
- 27 Decision trees (1 of 2)
- 28 Decision trees (2 of 2)
- 29 Evaluating a classifier