Intermediate Statistics with R

Introductory statistics courses prepare students to think statistically but cover relatively few statistical methods. Building on the basic statistical thinking emphasized in an introductory course, a second course in statistics at the undergraduate level can explore a large number of statistical me...

Full description

Saved in:
Bibliographic Details
Main Author: Greenwood, Mark C. (Author)
Format: Electronic eBook
Language:English
Published: Bozeman, Montana Montana State University [2021]
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0001078
003 MnU
005 20240224004005.0
006 m o d s
007 cr
008 210929s2021 mnu o 0 0 eng d
040 |a MnU  |b eng  |c MnU 
050 4 |a QA1 
050 4 |a QA37.3 
050 4 |a QA273-280 
100 1 |a Greenwood, Mark C.  |e author 
245 0 0 |a Intermediate Statistics with R  |c Mark Greenwood 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a Bozeman, Montana  |b Montana State University  |c [2021] 
264 4 |c ©2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a 1 Preface -- 2 (R)e-Introduction to statistics -- 3 One-Way ANOVA -- 4 Two-Way ANOVA -- 5 Chi-square tests -- 6 Correlation and Simple Linear Regression -- 7 Simple linear regression inference -- 8 Multiple linear regression -- 9 Case studies 
520 0 |a Introductory statistics courses prepare students to think statistically but cover relatively few statistical methods. Building on the basic statistical thinking emphasized in an introductory course, a second course in statistics at the undergraduate level can explore a large number of statistical methods. This text covers more advanced graphical summaries, One-Way ANOVA with pair-wise comparisons, Two-Way ANOVA, Chi-square testing, and simple and multiple linear regression models. Models with interactions are discussed in the Two-Way ANOVA and multiple linear regression setting with categorical explanatory variables. Randomization-based inferences are used to introduce new parametric distributions and to enhance understanding of what evidence against the null hypothesis “looks like”. Throughout, the use of the statistical software R via Rstudio is emphasized with all useful code and data sets provided within the text. This is Version 3.0 of the book. 
542 1 |f Attribution-NonCommercial 
546 |a In English. 
588 0 |a Description based on online resource 
650 0 |a Mathematics  |v Textbooks 
650 0 |a Applied mathematics  |v Textbooks 
650 0 |a Statistics  |v Textbooks 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/1078  |z Access online version