Statistics for Ecologists A Frequentist and Bayesian Treatment of Modern Regression Models

Ecological data pose many challenges to statistical inference. Most data come from observational studies rather than designed experiments; observational units are frequently sampled repeatedly over time, resulting in multiple, non-independent measurements; response data are often binary (e.g., prese...

Full description

Saved in:
Bibliographic Details
Main Author: Fieberg, John R. (Author)
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] University of Minnesota Libraries Publishing 2024.
Series:Open textbook library.
Subjects:
Online Access:Access online version
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a2200000 i 4500
001 OTLid0001588
003 MnU
005 20240303204221.0
006 m o d s
007 cr
008 240303s2024 mnu o 0 0 eng d
020 |a 9781959870029 
040 |a MnU  |b eng  |c MnU 
050 4 |a QA1 
050 4 |a QA273-280 
050 4 |a QH301 
100 1 |a Fieberg, John R.  |e author 
245 0 0 |a Statistics for Ecologists  |b A Frequentist and Bayesian Treatment of Modern Regression Models  |c John Fieberg 
264 2 |a Minneapolis, MN  |b Open Textbook Library 
264 1 |a [Place of publication not identified]  |b University of Minnesota Libraries Publishing  |c 2024. 
264 4 |c ©2024. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Open textbook library. 
505 0 |a About the Author -- Preface -- Models for Normally Distributed Responses -- What Variables to Include in a Model? -- Frequentist and Bayesian Inferential Frameworks -- Models for Non-Normal Data -- Models for Correlated Data -- Appendix -- References 
520 0 |a Ecological data pose many challenges to statistical inference. Most data come from observational studies rather than designed experiments; observational units are frequently sampled repeatedly over time, resulting in multiple, non-independent measurements; response data are often binary (e.g., presence-absence data) or non-negative integers (e.g., counts), and therefore, the data do not fit the standard assumptions of linear regression (Normality, independence, and constant variance). This book will familiarize readers with modern statistical methods that address these complexities using both frequentist and Bayesian frameworks. 
542 1 |f Attribution 
546 |a In English. 
588 0 |a Description based on online resource 
650 0 |a Mathematics  |v Textbooks 
650 0 |a Statistics  |v Textbooks 
650 0 |a Science  |v Textbooks 
710 2 |a Open Textbook Library  |e distributor 
856 4 0 |u https://open.umn.edu/opentextbooks/textbooks/1588  |z Access online version