Preparation and Application of Polymer Nanocomposites

This reprint focuses on the preparation of polymer nanocomposites for various fields, such as structural, electronic, sensing, energy harvesting, and biomedical applications. A wide variety of matrices have been considered, such as polymer-modified asphalt, ultra-high molecular weight polyethylene,...

Full description

Saved in:
Bibliographic Details
Other Authors: Cuberes, Teresa (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100019
005 20230511
003 oapen
006 m o d
007 cr|mn|---annan
008 20230511s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7123-2 
020 |a 9783036571225 
020 |a 9783036571232 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7123-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a MBN  |2 bicssc 
100 1 |a Cuberes, Teresa  |4 edt 
700 1 |a Cuberes, Teresa  |4 oth 
245 1 0 |a Preparation and Application of Polymer Nanocomposites 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (158 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint focuses on the preparation of polymer nanocomposites for various fields, such as structural, electronic, sensing, energy harvesting, and biomedical applications. A wide variety of matrices have been considered, such as polymer-modified asphalt, ultra-high molecular weight polyethylene, polymethyl methacrylate, polydimethylsiloxane elastomer, polyvinylidene fluoride, polyvinyl amide, poly(e-caloprolactone), and ureasyl polyether. The results corroborate that incorporating nanomaterials into polymeric matrices facilitates developing advanced materials with improved properties. Issues such as filler‒matrix interactions, molecular organization and rearrangement, size-dependent functionality, etc., are addressed in detail. Advanced nanosensing, nanofabrication, and nanocharacterization procedures are advantageously applied. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Public health & preventive medicine  |2 bicssc 
653 |a storage stability 
653 |a rheological properties 
653 |a polymer-modified asphalt 
653 |a nano-montmorillonite 
653 |a thickness effect 
653 |a solid insulation dielectrics 
653 |a breakdown strength 
653 |a polymer nanocomposites 
653 |a CuO nanostructures 
653 |a PMMA 
653 |a e-beam lithography 
653 |a resist process engineering 
653 |a X-ray fluorescence 
653 |a chemical synthesis 
653 |a organic-inorganic hybrid films 
653 |a atomic force microscopy 
653 |a ultrasonic force microscopy 
653 |a sol-gel 
653 |a nanomaterials 
653 |a poly(ε-caprolactone) (PCL) 
653 |a multi-walled carbon nanotubes (MWCNTs) 
653 |a electro-spun carbon nanofibers (ESCNFs) 
653 |a Raman microspectroscopy 
653 |a human U-2 OS cell line 
653 |a bioactivity 
653 |a ultra-high molecular weight polyethylene 
653 |a polymethylene-p-triphenyl ester of boric acid 
653 |a borpolymer 
653 |a polymer composite materials 
653 |a capacitive pressure sensor 
653 |a porous polydimethylsiloxane 
653 |a stress-sensitive 
653 |a wearable electronic 
653 |a zinc oxide nanowire 
653 |a dielectric properties 
653 |a electrospinning 
653 |a fiber composite 
653 |a PVDF 
653 |a PA 
653 |a TENG 
653 |a triboelectric effect 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7112  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100019  |7 0  |z DOAB: description of the publication