Design and Application of Agricultural Equipment in Tillage System

Agricultural productivity should increase to meet the growing food demand. Tillage is defined as the mechanical manipulation of agricultural soil, and it is an extremely vital part of crop production, particularly for seedbed preparation and weed control. Tillage operations are carried out using mec...

Full description

Saved in:
Bibliographic Details
Other Authors: Ucgul, Mustafa (Editor), Chang, Chung-Liang (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
DEM
MBD
GMM
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100060
005 20230511
003 oapen
006 m o d
007 cr|mn|---annan
008 20230511s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7295-6 
020 |a 9783036572949 
020 |a 9783036572956 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7295-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Ucgul, Mustafa  |4 edt 
700 1 |a Chang, Chung-Liang  |4 edt 
700 1 |a Ucgul, Mustafa  |4 oth 
700 1 |a Chang, Chung-Liang  |4 oth 
245 1 0 |a Design and Application of Agricultural Equipment in Tillage System 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (564 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Agricultural productivity should increase to meet the growing food demand. Tillage is defined as the mechanical manipulation of agricultural soil, and it is an extremely vital part of crop production, particularly for seedbed preparation and weed control. Tillage operations are carried out using mechanical force, commonly with a tractor-drawn tool to achieve the cutting, inversion, pulverization, and disturbance of soil. A significant part of the energy (from fossil fuels) used in crop production is expended in tillage. This energy use results in greenhouse gas emissions. It is essential that we reduce energy use (hence, greenhouse gas emissions) to achieve sustainable farming practices and improve crop production and design new tillage tools or optimize the existing tools. Although the design and evaluation of tillage tools are generally carried out using analytical methods and field experiments, with recent technological improvements, computer technology has been used for the design and evaluation of tillage tools. Additionally, sensor technology can improve the efficiency of tillage tools. This Special Issue collated innovative papers that make a significant contribution to the design and application of agricultural equipment in tillage systems. It involved original research and review papers from different research fields, such as agricultural engineering, engineering simulation, and precision agriculture. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a deep learning 
653 |a machine vision 
653 |a weeder 
653 |a smart agriculture 
653 |a mechanical control 
653 |a agricultural 
653 |a unmanned 
653 |a electrical tractor 
653 |a no-tillage 
653 |a disc 
653 |a spring-tine 
653 |a soil 
653 |a property 
653 |a traffic 
653 |a rapeseed transplanting 
653 |a hole-forming device 
653 |a key components 
653 |a experiment 
653 |a electric tractor 
653 |a motor efficiency 
653 |a dual motor coupling drive 
653 |a I-SA algorithm 
653 |a generalization ability 
653 |a parameter identification 
653 |a image processing 
653 |a two-wheeled robot trailer 
653 |a steering control 
653 |a strip farming 
653 |a no-tillage sowing 
653 |a sowing strip cleaning 
653 |a spiral discharge straw 
653 |a discrete element simulation 
653 |a anti-blocking and row-sorting 
653 |a compound planter 
653 |a ditching 
653 |a soil separation spiral 
653 |a discrete element method 
653 |a parameter optimization 
653 |a agricultural machinery 
653 |a HMCVT 
653 |a correction of characteristics 
653 |a I-PSO algorithm 
653 |a parameter match 
653 |a residual film recovery machine 
653 |a DEM 
653 |a virtual simulation 
653 |a hydro-mechanical continuously variable transmission 
653 |a tractor 
653 |a optimization design 
653 |a simulation experiments 
653 |a I-GA 
653 |a geometric principle 
653 |a plough 
653 |a ploughshares 
653 |a durability calculation method 
653 |a agricultural machine 
653 |a wear 
653 |a plasma-hardening surface 
653 |a simulation 
653 |a quality improvement 
653 |a improved genetic algorithm 
653 |a full-factorial test 
653 |a single evaluation index modeling method 
653 |a control strategy 
653 |a soil cover 
653 |a discrete element 
653 |a soil-covering thickness 
653 |a seed offset 
653 |a rice combine harvester 
653 |a throwing device 
653 |a wind blades 
653 |a fluid analysis 
653 |a deflector optimization 
653 |a throwing width 
653 |a cotton recovery device 
653 |a EDEM 
653 |a parameters optimization 
653 |a MBD 
653 |a coupled simulation 
653 |a seeding 
653 |a soybean 
653 |a seed-soil 
653 |a corn seed 
653 |a collision restitution coefficient 
653 |a residual film recovery device 
653 |a response surface regression model 
653 |a seedbed clearing and shaping 
653 |a stone removal rate 
653 |a seeding furrow 
653 |a dry direct-seeded rice 
653 |a discrete element modeling 
653 |a dual vs. single tyres 
653 |a rut depth 
653 |a soil bearing capacity 
653 |a soil displacement 
653 |a tractive efficiency 
653 |a tyre size and inflation pressure 
653 |a Kmeans 
653 |a DBSCAN 
653 |a GMM 
653 |a tilling depth 
653 |a well-cellar cavitating mechanism 
653 |a MBD-DEM bidirectional coupling model 
653 |a optimal design 
653 |a cavitating law 
653 |a flat disc 
653 |a analytical force prediction model 
653 |a discrete element method (DEM) 
653 |a soil-tool interaction 
653 |a disc seeder 
653 |a disc blade 
653 |a force prediction 
653 |a semi-analytical model 
653 |a sandy soil 
653 |a stubble management 
653 |a no-till sowing 
653 |a stalk cutting 
653 |a post-harvest 
653 |a prototype 
653 |a multi-body dynamics (MBD) 
653 |a DEM-MBD coupling 
653 |a topsoil burial 
653 |a tillage 
653 |a traction 
653 |a compaction 
653 |a neural networks 
653 |a support vector regression 
653 |a fuzzy inference system 
653 |a adaptive neuro-fuzzy inference system 
653 |a calibration 
653 |a DEM contact models 
653 |a soil dynamics 
653 |a soil failure 
653 |a soil forces 
653 |a cohesive and frictional soils 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7153  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100060  |7 0  |z DOAB: description of the publication