Remote Sensing Based Building Extraction II

Building extraction from remote sensing data plays an important role in geospatial applications such as urban planning, disaster management, navigation, and updating geographic databases. The rapid development of image processing techniques and the accessibility of very-high-resolution multispectral...

Full description

Saved in:
Bibliographic Details
Other Authors: Tian, Jiaojiao (Editor), Yan, Qin (Editor), Awrangjeb, Mohammad (Editor), Kallfelz-Sirmacek, Beril (Editor), Demir, Nusret (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100123
005 20230511
003 oapen
006 m o d
007 cr|mn|---annan
008 20230511s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7065-5 
020 |a 9783036570648 
020 |a 9783036570655 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7065-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a RG  |2 bicssc 
100 1 |a Tian, Jiaojiao  |4 edt 
700 1 |a Yan, Qin  |4 edt 
700 1 |a Awrangjeb, Mohammad  |4 edt 
700 1 |a Kallfelz-Sirmacek, Beril  |4 edt 
700 1 |a Demir, Nusret  |4 edt 
700 1 |a Tian, Jiaojiao  |4 oth 
700 1 |a Yan, Qin  |4 oth 
700 1 |a Awrangjeb, Mohammad  |4 oth 
700 1 |a Kallfelz-Sirmacek, Beril  |4 oth 
700 1 |a Demir, Nusret  |4 oth 
245 1 0 |a Remote Sensing Based Building Extraction II 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (276 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Building extraction from remote sensing data plays an important role in geospatial applications such as urban planning, disaster management, navigation, and updating geographic databases. The rapid development of image processing techniques and the accessibility of very-high-resolution multispectral, hyperspectral, LiDAR, and SAR remote sensing images have further boosted research on building-extraction-related topics. In particular, to meet the recent demand for advanced artificial intelligence models, many research institutes and associations have provided open source datasets and annotated training data, presenting new opportunities to develop advanced approaches for building extraction and monitoring. Hence, there are higher expectations of the efficiency, accuracy, and robustness of building extraction approaches. Additionally, they should meet the demand for processing large city-, national-, and global-scale datasets. Moreover, learning and dealing with imperfect training data remains a challenge, as does unexpected objects in urban scenes such as trees, clouds, and shadows. In addition to building masks, more research has arisen on the automatic generation of LoD2/3 building models from remote sensing data. This follow-up Special Issue of "Remote Sensing-based Building Extraction", has collected more research on cutting-edge approaches to essential urban processes such as 3D reconstruction, automatic building segmentation, and 3D roof modelling. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Geography  |2 bicssc 
653 |a building extraction 
653 |a high-resolution remote-sensing image 
653 |a semantic edge detection 
653 |a semantic segmentation 
653 |a building footprint 
653 |a map vectorization 
653 |a convolutional neural network 
653 |a airborne LiDAR 
653 |a graph segmentation 
653 |a object primitive 
653 |a geometric feature 
653 |a road extraction 
653 |a high-resolution image 
653 |a hyperspectral image 
653 |a synthetic aperture radar (SAR) 
653 |a light detection and ranging (LiDAR) 
653 |a farmland range 
653 |a attention enhancement 
653 |a U-Net network improvement 
653 |a multi-source remote sensing image 
653 |a building model 
653 |a reconstruction 
653 |a half-space 
653 |a LiDAR data 
653 |a urban scale 
653 |a interactive segmentation network 
653 |a deep learning 
653 |a iterative training 
653 |a remote sensing images 
653 |a spatial attention 
653 |a global information awareness 
653 |a cross level information fusion 
653 |a dense matching 
653 |a convolutional neural networks 
653 |a end-to-end 
653 |a pyramid architecture 
653 |a building reconstruction 
653 |a LiDAR 
653 |a point clouds 
653 |a integer programming 
653 |a airborne Earth observation 
653 |a ultrahigh spatial resolution 
653 |a instance segmentation 
653 |a fully convolutional neural networks 
653 |a roofscape 
653 |a remote sensing building extraction 
653 |a building photovoltaic 
653 |a self-supervised learning 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7217  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100123  |7 0  |z DOAB: description of the publication