Twisted Isospectrality, Homological Wideness, and Isometry A Sample of Algebraic Methods in Isospectrality

The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether on...

Olles dieđut

Furkejuvvon:
Bibliográfalaš dieđut
Váldodahkki: Cornelissen, Gunther (auth)
Eará dahkkit: Peyerimhoff, Norbert (auth)
Materiálatiipa: Elektrovnnalaš Girjji oassi
Giella:eaŋgalasgiella
Almmustuhtton: Cham Springer Nature 2023
Ráidu:SpringerBriefs in Mathematics
Fáttát:
Liŋkkat:DOAB: download the publication
DOAB: description of the publication
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!
Govvádus
Čoahkkáigeassu:The question of reconstructing a geometric shape from spectra of operators (such as the Laplace operator) is decades old and an active area of research in mathematics and mathematical physics. This book focusses on the case of compact Riemannian manifolds, and, in particular, the question whether one can find finitely many natural operators that determine whether two such manifolds are isometric (coverings). The methods outlined in the book fit into the tradition of the famous work of Sunada on the construction of isospectral, non-isometric manifolds, and thus do not focus on analytic techniques, but rather on algebraic methods: in particular, the analogy with constructions in number theory, methods from representation theory, and from algebraic topology. The main goal of the book is to present the construction of finitely many "twisted" Laplace operators whose spectrum determines covering equivalence of two Riemannian manifolds. The book has a leisure pace and presents details and examples that are hard to find in the literature, concerning: fiber products of manifolds and orbifolds, the distinction between the spectrum and the spectral zeta function for general operators, strong isospectrality, twisted Laplacians, the action of isometry groups on homology groups, monomial structures on group representations, geometric and group-theoretical realisation of coverings with wreath products as covering groups, and "class field theory" for manifolds. The book contains a wealth of worked examples and open problems. After perusing the book, the reader will have a comfortable working knowledge of the algebraic approach to isospectrality. This is an open access book.
Olgguldas hápmi:1 electronic resource (111 p.)
ISBN:978-3-031-27704-7
9783031277047
9783031277030
Beassan:Open Access