Advancing Natural Language Processing in Educational Assessment

Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and profess...

Full description

Saved in:
Bibliographic Details
Other Authors: Yaneva, Victoria (Editor), von Davier, Matthias (Editor)
Format: Electronic Book Chapter
Language:English
Published: Taylor & Francis 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100384
005 20230526
003 oapen
006 m o d
007 cr|mn|---annan
008 20230526s2023 xx |||||o ||| 0|eng d
020 |a 9781003278658 
020 |a 9781003278658 
020 |a 9781032244525 
020 |a 9781032203904 
040 |a oapen  |c oapen 
024 7 |a 10.4324/9781003278658  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a JNKD  |2 bicssc 
072 7 |a JMBT  |2 bicssc 
072 7 |a JNC  |2 bicssc 
100 1 |a Yaneva, Victoria  |4 edt 
700 1 |a von Davier, Matthias  |4 edt 
700 1 |a Yaneva, Victoria  |4 oth 
700 1 |a von Davier, Matthias  |4 oth 
245 1 0 |a Advancing Natural Language Processing in Educational Assessment 
260 |b Taylor & Francis  |c 2023 
300 |a 1 electronic resource (261 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Advancing Natural Language Processing in Educational Assessment examines the use of natural language technology in educational testing, measurement, and assessment. Recent developments in natural language processing (NLP) have enabled large-scale educational applications, though scholars and professionals may lack a shared understanding of the strengths and limitations of NLP in assessment as well as the challenges that testing organizations face in implementation. This first-of-its-kind book provides evidence-based practices for the use of NLP-based approaches to automated text and speech scoring, language proficiency assessment, technology-assisted item generation, gamification, learner feedback, and beyond. Spanning historical context, validity and fairness issues, emerging technologies, and implications for feedback and personalization, these chapters represent the most robust treatment yet about NLP for education measurement researchers, psychometricians, testing professionals, and policymakers. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by-nc-nd/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ 
546 |a English 
650 7 |a Examinations & assessment  |2 bicssc 
650 7 |a Psychological testing & measurement  |2 bicssc 
650 7 |a Educational psychology  |2 bicssc 
653 |a Advancing Natural Language Processing in Educational Assessment;artificial intelligence;automated text and speech scoring;automatic item generation;classroom assessment;deep neural networks;educational measurement;educational testing;fairness;gamification;language proficiency assessment;learner feedback;linguistic signal;Matthias von Davier;multiple choice items;National Board of Medical Examiners;National Council on Measurement in Education;NBME;NCME;NLP;personalized learning;psychometrics;technology-assisted item generation;Victoria Yaneva;validity 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/63151/1/9781000904161.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100384  |7 0  |z DOAB: description of the publication