Modification and Processing of Biodegradable Polymers

Polymeric products made from petrochemical polymers are extremely stable in environmental conditions. After their exploitation, this becomes a serious problem for the environment. Most of the products made of plastic are stockpiled in landfills, and the decomposition time of such products is often s...

Full description

Saved in:
Bibliographic Details
Other Authors: Moraczewski, Krzysztof (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100908
005 20230623
003 oapen
006 m o d
007 cr|mn|---annan
008 20230623s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7372-4 
020 |a 9783036573731 
020 |a 9783036573724 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7372-4  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a GP  |2 bicssc 
072 7 |a PH  |2 bicssc 
100 1 |a Moraczewski, Krzysztof  |4 edt 
700 1 |a Moraczewski, Krzysztof  |4 oth 
245 1 0 |a Modification and Processing of Biodegradable Polymers 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (324 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Polymeric products made from petrochemical polymers are extremely stable in environmental conditions. After their exploitation, this becomes a serious problem for the environment. Most of the products made of plastic are stockpiled in landfills, and the decomposition time of such products is often several hundred years. The solution to this problem may be the use of biodegradable polymers derived from renewable materials, undergoing a process of biodegradation.Biodegradable polymers are distinctly different than regular polymers in material characteristics. Biodegradable polymers like any other polymer can be processed using conventional techniques such as injection molding, extrusion, and compression molding. Furthermore using appropriate methods of modification, new or improved properties of materials can be obtained. However, the distinct narrow modification and processing window makes them a challenge to modify or process.Continuing technological progress in the modification and processing of biodegradable polymers leads not only to the enhancement of the product quality, but also to the reduction of their prices. As a result, biodebradable polymers may be used to produce both common-use articles or packaging materials, as well as more complex engineering applications.In this reprint, we aimed therefore to publish original work and reviews about the current trends and technologies for the modification and processing of biodegradable polymers and its composites aimed at improving their properties and extending the application possibilities. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
650 7 |a Physics  |2 bicssc 
653 |a polylactide 
653 |a biodegradable blends 
653 |a irradiation 
653 |a crosslinking 
653 |a degradation 
653 |a poly(L-lactide) 
653 |a laser irradiation 
653 |a surface enhancement 
653 |a micromechanical properties 
653 |a cytotoxicity 
653 |a melanin 
653 |a watermelon seeds 
653 |a whey protein 
653 |a bioactive films 
653 |a plant residues 
653 |a tea tree essential oil 
653 |a poly(ethylene glycol) 
653 |a packaging material 
653 |a antibacterial films 
653 |a biodegradable polymers 
653 |a PBAT/PLA 
653 |a blown films 
653 |a food packaging 
653 |a toughness 
653 |a magnesium alloy 
653 |a cardiovascular stents 
653 |a callic acid 
653 |a dip coating 
653 |a endothelialization 
653 |a anticorrosion 
653 |a quercetin 
653 |a antibacterial properties 
653 |a biodegradable and oxo-biodegradable packaging 
653 |a polymers 
653 |a MSW composting plant 
653 |a FTIR spectroscopy 
653 |a composite 
653 |a injection moulding 
653 |a biofiller 
653 |a bioplastic 
653 |a thermal properties 
653 |a thermo-mechanical properties 
653 |a mechanical properties 
653 |a agro-waste materials 
653 |a agro-flour filler 
653 |a accelerated ageing 
653 |a natural filler 
653 |a thermal resistance 
653 |a discolouration 
653 |a lignocellulosic materials 
653 |a biopolymer 
653 |a composites 
653 |a polylactide films 
653 |a olive leaves 
653 |a extract 
653 |a antioxidants 
653 |a lignocellulosic material 
653 |a chemical modification 
653 |a poly(lactic acid) composites 
653 |a in situ polymerization 
653 |a grafting biocomposites 
653 |a biodegradable composites 
653 |a watermelon 
653 |a alginate 
653 |a nanoparticles 
653 |a copolymer 
653 |a hydrogel 
653 |a microgel 
653 |a nanocomposite 
653 |a nanosilica 
653 |a biodegradable polymer 
653 |a packaging materials 
653 |a gamma radiation 
653 |a quality 
653 |a safety 
653 |a food contact materials 
653 |a epoxy resin 
653 |a eco-additives 
653 |a experimental tests 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7376  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100908  |7 0  |z DOAB: description of the publication