Artificial Intelligence Techniques in Hydrology and Water Resources Management

The sustainable management of water cycles is crucial in the context of climate change and global warming. It involves managing global, regional, and local water cycles, as well as urban, agricultural, and industrial water cycles, to conserve water resources and their relationships with energy, food...

Full description

Saved in:
Bibliographic Details
Other Authors: Chang, Fi-John (Editor), Chang, Li-Chiu (Editor), Chen, Jui-Fa (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100909
005 20230623
003 oapen
006 m o d
007 cr|mn|---annan
008 20230623s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7784-5 
020 |a 9783036577852 
020 |a 9783036577845 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7784-5  |c doi 
041 0 |a eng 
042 |a dc 
100 1 |a Chang, Fi-John  |4 edt 
700 1 |a Chang, Li-Chiu  |4 edt 
700 1 |a Chen, Jui-Fa  |4 edt 
700 1 |a Chang, Fi-John  |4 oth 
700 1 |a Chang, Li-Chiu  |4 oth 
700 1 |a Chen, Jui-Fa  |4 oth 
245 1 0 |a Artificial Intelligence Techniques in Hydrology and Water Resources Management 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (302 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The sustainable management of water cycles is crucial in the context of climate change and global warming. It involves managing global, regional, and local water cycles, as well as urban, agricultural, and industrial water cycles, to conserve water resources and their relationships with energy, food, microclimates, biodiversity, ecosystem functioning, and anthropogenic activities. Hydrological modeling is indispensable for achieving this goal, as it is essential for water resources management and the mitigation of natural disasters. In recent decades, the application of artificial intelligence (AI) techniques in hydrology and water resources management has led to notable advances. In the face of hydro-geo-meteorological uncertainty, AI approaches have proven to be powerful tools for accurately modeling complex, nonlinear hydrological processes and effectively utilizing various digital and imaging data sources, such as ground gauges, remote sensing tools, and in situ Internet of Things (IoT) devices. The thirteen research papers published in this Special Issue make significant contributions to long- and short-term hydrological modeling and water resources management under changing environments using AI techniques coupled with various analytics tools. These contributions, which cover hydrological forecasting, microclimate control, and climate adaptation, can promote hydrology research and direct policy making toward sustainable and integrated water resources management. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
653 |a ANN 
653 |a roadside IoT sensors 
653 |a simulations of the gridded rainstorms 
653 |a 2D inundation simulation and real-time error correction 
653 |a weather types and features 
653 |a meteorological feature extraction 
653 |a artificial neural network 
653 |a self-organizing map (SOM) 
653 |a urban agriculture 
653 |a resource utilization efficiency 
653 |a urban northern Taiwan 
653 |a machine learning 
653 |a random forest 
653 |a regression analysis 
653 |a support vector machine 
653 |a threshold rainfall 
653 |a threshold runoff 
653 |a XGBoost 
653 |a stochastic rainfall generator 
653 |a Huff rainfall curve 
653 |a copula 
653 |a GeoAI 
653 |a artificial intelligence 
653 |a hydrological 
653 |a hydraulic 
653 |a fluvial 
653 |a water quality 
653 |a geomorphic 
653 |a modeling 
653 |a anomaly detection 
653 |a deep reinforcement learning 
653 |a telemetry water level 
653 |a time series 
653 |a ensemble 
653 |a multi-model ensemble 
653 |a precipitation 
653 |a forecasting 
653 |a persian gulf 
653 |a deep learning 
653 |a dam inflow 
653 |a RNN 
653 |a LSTM 
653 |a GRU 
653 |a hyperparameter 
653 |a rainfall time series 
653 |a artificial neural networks 
653 |a Multiple Linear Regression 
653 |a Chania 
653 |a CNN 
653 |a ELM 
653 |a temporary rivers 
653 |a hydrological extremes 
653 |a multivariate stochastic model 
653 |a autoregressive model 
653 |a Markov model 
653 |a daily temperature 
653 |a temperature generator 
653 |a Bayesian neural network 
653 |a forecasting uncertainty 
653 |a multi-step ahead forecasting 
653 |a probabilistic streamflow forecasting 
653 |a variational inference 
653 |a smart microclimate-control system (SMCS) 
653 |a system dynamics 
653 |a water-energy-food nexus 
653 |a agricultural resilience 
653 |a hydroinformatics 
653 |a hydrological modeling 
653 |a early warning 
653 |a uncertainty 
653 |a sustainability 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7377  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100909  |7 0  |z DOAB: description of the publication