Complex Dynamic System Modelling, Identification and Control

The study of complex dynamic systems has become increasingly important in recent years due to its wide range of applications in fields such as engineering, physics, economics, and biology. These systems are characterized by their interconnectedness, nonlinearities, and feedback loops, which make the...

Full description

Saved in:
Bibliographic Details
Other Authors: Zhu, Quanmin (Editor), Fusco, Giuseppe (Editor), Na, Jing (Editor), Zhang, Weicun (Editor), Azar, Ahmad Taher (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
DFA
MPE
SVM
PSO
CDM
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_100923
005 20230623
003 oapen
006 m o d
007 cr|mn|---annan
008 20230623s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7660-2 
020 |a 9783036576619 
020 |a 9783036576602 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7660-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a TB  |2 bicssc 
072 7 |a TBX  |2 bicssc 
100 1 |a Zhu, Quanmin  |4 edt 
700 1 |a Fusco, Giuseppe  |4 edt 
700 1 |a Na, Jing  |4 edt 
700 1 |a Zhang, Weicun  |4 edt 
700 1 |a Azar, Ahmad Taher  |4 edt 
700 1 |a Zhu, Quanmin  |4 oth 
700 1 |a Fusco, Giuseppe  |4 oth 
700 1 |a Na, Jing  |4 oth 
700 1 |a Zhang, Weicun  |4 oth 
700 1 |a Azar, Ahmad Taher  |4 oth 
245 1 0 |a Complex Dynamic System Modelling, Identification and Control 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (352 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The study of complex dynamic systems has become increasingly important in recent years due to its wide range of applications in fields such as engineering, physics, economics, and biology. These systems are characterized by their interconnectedness, nonlinearities, and feedback loops, which make them difficult to understand and control. As a result, there has been growing interest in developing tools and techniques for the modelling, identification, and control of complex dynamic systems.The aim of this reprint is to provide an overview of the state-of-the-art methods for the modelling, identification, and control of complex dynamic systems. This reprint covers a wide range of topics, including system identification, model-based control, adaptive control, nonlinear control, and predictive control. It also includes case studies and examples from different fields to demonstrate the practical application of these methods.This reprint is intended for researchers, graduate students, and practitioners in the field of control systems. It assumes a basic understanding of linear systems theory, calculus, and linear algebra. Overall, this reprint provides a comprehensive and up-to-date overview of the methods for the modelling, identification, and control of complex dynamic systems. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a Internal Model Control (IMC) 
653 |a U-model 
653 |a U-model-based control (U-control) 
653 |a Two-Degree-of-Freedom IMC (TDF-IMC) 
653 |a dynamic inversion 
653 |a invariance entropy 
653 |a automatic control 
653 |a mutual information 
653 |a static detection 
653 |a Chi-square test 
653 |a permission 
653 |a FlowDroid 
653 |a series causality analysis 
653 |a Bayesian LSTM 
653 |a multi-sensor system 
653 |a meteorological data 
653 |a big measurement data 
653 |a deep fusion predictor 
653 |a cobalt removal process 
653 |a mechanistic kinetic model 
653 |a parameter estimation 
653 |a constrained parameter estimation 
653 |a data reconciliation 
653 |a robust estimator 
653 |a gross error detection 
653 |a feeding composition 
653 |a fault diagnosis 
653 |a sensor fault 
653 |a actuator fault 
653 |a deep convolutional neural network 
653 |a robot joints 
653 |a railway accident prevention 
653 |a critical hazard identification 
653 |a accident causality network 
653 |a integer programming 
653 |a active diagnosis 
653 |a active reconfiguration 
653 |a constrained systems 
653 |a fault tolerance 
653 |a interpolation control 
653 |a linear programming 
653 |a structured control 
653 |a flexible spacecraft 
653 |a prevent oscillations 
653 |a adaptive fixed-time control 
653 |a neural network control 
653 |a strict-feedback high-order nonlinear systems 
653 |a cluster-delay mean square consensus 
653 |a multi-agent systems 
653 |a stochastic disturbances 
653 |a impulse time windows 
653 |a impulsive control 
653 |a multiplicative adaptation 
653 |a gain adjustment 
653 |a spectral damping 
653 |a robust stability 
653 |a local unknown input 
653 |a interconnected system 
653 |a local reconstrucability 
653 |a global reconstrucability 
653 |a reduce-order uncertain observer 
653 |a chaos theory 
653 |a bifurcation 
653 |a stabilization 
653 |a chaos synchronization 
653 |a robust control 
653 |a rolling bearing fault 
653 |a CEEMDAN 
653 |a DFA 
653 |a improved wavelet threshold 
653 |a QPSO 
653 |a MPE 
653 |a SVM 
653 |a adaptive fixed-time 
653 |a neural network 
653 |a nonlinear interconnected systems 
653 |a X-ray pulsar 
653 |a signal denoising 
653 |a variational mode decomposition 
653 |a MIMO 
653 |a coupling 
653 |a PSO 
653 |a CDM 
653 |a measurement noise 
653 |a robust controller 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7391  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/100923  |7 0  |z DOAB: description of the publication