Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics

The present reprint contains 33 articles accepted and published in the Special Issue entitled "Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics, 2022" in the MDPI journal, Mathematics, which covers a wide range of...

Full description

Saved in:
Bibliographic Details
Other Authors: Gou, Jianping (Editor), Ou, Weihua (Editor), Zeng, Shaoning (Editor), Du, Lan (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
NMS
MMD
kNN
KGE
GCN
GAT
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_101363
005 20230714
003 oapen
006 m o d
007 cr|mn|---annan
008 20230714s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7263-5 
020 |a 9783036572628 
020 |a 9783036572635 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7263-5  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Gou, Jianping  |4 edt 
700 1 |a Ou, Weihua  |4 edt 
700 1 |a Zeng, Shaoning  |4 edt 
700 1 |a Du, Lan  |4 edt 
700 1 |a Gou, Jianping  |4 oth 
700 1 |a Ou, Weihua  |4 oth 
700 1 |a Zeng, Shaoning  |4 oth 
700 1 |a Du, Lan  |4 oth 
245 1 0 |a Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (556 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The present reprint contains 33 articles accepted and published in the Special Issue entitled "Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics, 2022" in the MDPI journal, Mathematics, which covers a wide range of topics connected to the theory and applications of feature representation learning for image processing, artificial intelligence, data mining and robotics. These topics include, among others, elements from image blurring, image aesthetic quality assessment, pedestrian detection, visual tracking, vehicle re-identification, face recognition, 3D reconstruction, the stability of switched systems, domain adaption, deep reinforcement, sentiment analysis, graph convolutional networks, knowledge graphs, geometric metric learning, etc. It is hoped that this reprint will be interesting and useful for those working in the area of image processing, computer vision, machine learning, natural language processing and robotics, as well as for those with backgrounds in machine learning who are willing to become familiar with recent advancements in artificial intelligence, which, today, is present in almost all aspects of human life and activities. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a head detection 
653 |a YoloV4 
653 |a NMS 
653 |a soft-NMS 
653 |a people counting 
653 |a vehicle re-identification 
653 |a license plate recognition 
653 |a video surveillance 
653 |a feature extraction 
653 |a pedestrian detection 
653 |a machine learning 
653 |a end-to-end 
653 |a anchor-free 
653 |a feature reuse 
653 |a correlation filters 
653 |a second-order fitting 
653 |a visual tracking 
653 |a DCNN-BiLSTM 
653 |a domain adaptation 
653 |a MMD 
653 |a fine-tuning 
653 |a C-MAPSS 
653 |a cross-working 
653 |a small sample 
653 |a blind image deblurring 
653 |a image prior 
653 |a sparse channel 
653 |a sparsity 
653 |a multi-output 
653 |a kNN 
653 |a metric learning 
653 |a cost-weighted 
653 |a geometric mean metric 
653 |a motion deblurring 
653 |a image super-resolution 
653 |a multi-order attention 
653 |a gated learning 
653 |a decoupling 
653 |a face recognition 
653 |a second-order gradient 
653 |a image gradient orientations 
653 |a collaborative-representation-based classification 
653 |a image aesthetic assessment 
653 |a semi-supervised learning 
653 |a label propagation 
653 |a deep learning 
653 |a computer vision 
653 |a garbage quantity identification 
653 |a YOLOX 
653 |a Soft-NMS 
653 |a stability 
653 |a switched system 
653 |a state-dependent switching 
653 |a time delay 
653 |a multi-source domain adaptation 
653 |a Dempster-Shafer evidence theory 
653 |a cross-domain classification 
653 |a 3D reconstruction 
653 |a multi-view stereo 
653 |a structure from motion 
653 |a background matting 
653 |a adversarial example 
653 |a feature transformation 
653 |a black-box attack 
653 |a ensemble attack 
653 |a deep neural network 
653 |a intelligent design 
653 |a data analysis 
653 |a models and algorithms 
653 |a extension theory 
653 |a scheme design 
653 |a adversarial learning 
653 |a adversarial equilibrium 
653 |a transferability quantification 
653 |a power load forecasting 
653 |a routing, modulation and spectrum assignment 
653 |a elastic optical networks 
653 |a deep reinforcement learning 
653 |a knowledge distillation 
653 |a aspect-based sentiment analysis 
653 |a graph neural networks 
653 |a dependency trees 
653 |a dependency types 
653 |a graph attention mechanism 
653 |a syntactic 
653 |a semantic 
653 |a vehicle color recognition 
653 |a low-high level joint task 
653 |a object detection 
653 |a joint semantic learning 
653 |a rainy image recovery 
653 |a XSS attack 
653 |a traffic detection 
653 |a payloads 
653 |a fusion verification 
653 |a hypergraph matching 
653 |a similarity metric 
653 |a information-theoretic metric learning 
653 |a mixed noise removal 
653 |a matrix nuclear norm 
653 |a logarithm norm 
653 |a ADMM 
653 |a plug-and-play 
653 |a aspect-level sentiment classification 
653 |a external knowledge 
653 |a KGE 
653 |a GCN 
653 |a discriminative feature learning 
653 |a multidimensional scaling 
653 |a fuzzy k-means 
653 |a pairwise constraint propagation 
653 |a iterative majorization algorithm 
653 |a Aspect Level Sentiment Classification 
653 |a Contrasitve Learning 
653 |a Graph Convolutional Networks 
653 |a graph convolutional networks 
653 |a commonsense knowledge graph 
653 |a anomaly detection 
653 |a cyber-physical 
653 |a industrial control systems 
653 |a image classification 
653 |a large-margin technique 
653 |a robustness 
653 |a anti-noise performance 
653 |a cross-domain sentiment classification 
653 |a word embedding 
653 |a GAT 
653 |a hate speech detection 
653 |a contrastive learning 
653 |a multi-task learning 
653 |a attention mechanism 
653 |a state reconstruction 
653 |a gait adjustment 
653 |a uncertain temporal knowledge graph 
653 |a temporal knowledge graph 
653 |a knowledge graph embedding 
653 |a confidence score 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7458  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/101363  |7 0  |z DOAB: description of the publication