Applied Machine Learning

This reprint focuses on applications of machine learning models in a diverse range of fields and problems. It reports substantive results on a wide range of learning methods; discusses the conceptualization of problems, data representation, feature engineering, machine learning models; undertakes cr...

Full description

Saved in:
Bibliographic Details
Other Authors: Dudek, Grzegorz (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
SVM
NLP
LDA
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_101406
005 20230714
003 oapen
006 m o d
007 cr|mn|---annan
008 20230714s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7907-8 
020 |a 9783036579061 
020 |a 9783036579078 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7907-8  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Dudek, Grzegorz  |4 edt 
700 1 |a Dudek, Grzegorz  |4 oth 
245 1 0 |a Applied Machine Learning 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (808 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This reprint focuses on applications of machine learning models in a diverse range of fields and problems. It reports substantive results on a wide range of learning methods; discusses the conceptualization of problems, data representation, feature engineering, machine learning models; undertakes critical comparisons with existing techniques; and presents an interpretation of the results. The topics within the chapters of the publication fall into six categories: computer vision, teaching and learning, social media, forecasting, basic problems of machine learning, and other topics. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a robust matrix factorization 
653 |a student grade prediction 
653 |a educational data mining 
653 |a side information graph 
653 |a personal teaching and learning 
653 |a deep multi-target prediction 
653 |a Felder-Silverman learning style 
653 |a adaptive e-learning systems 
653 |a artificial neural network 
653 |a deep learning 
653 |a transfer learning 
653 |a student performance prediction 
653 |a Machine learning analysis 
653 |a sentence modeling 
653 |a topic analysis 
653 |a cross referencing topic 
653 |a machine learning 
653 |a classification 
653 |a preprocessing 
653 |a instance selection 
653 |a data mining 
653 |a predictive analytics 
653 |a sales 
653 |a performance measurement 
653 |a human resources 
653 |a rumor refuter 
653 |a nature language processing 
653 |a XGBoost 
653 |a feature analysis 
653 |a Bitcoin 
653 |a higher order neural network 
653 |a volatility forecasting 
653 |a hybrid models 
653 |a warehouse optimization 
653 |a genetic algorithms 
653 |a crossover 
653 |a construction productivity 
653 |a construction safety 
653 |a synthetic data 
653 |a tracking 
653 |a academic performance 
653 |a course grades 
653 |a grade point average 
653 |a prediction 
653 |a undergraduate 
653 |a cloud detection 
653 |a superpixel segmentation 
653 |a convolutional neural networks 
653 |a support vector machines 
653 |a machine learning algorithms 
653 |a multiple linear regression 
653 |a SVM 
653 |a management 
653 |a social network services 
653 |a image representation 
653 |a local features 
653 |a autoencoder 
653 |a convolutional neural network 
653 |a user generated content 
653 |a sentiment analysis 
653 |a keyword extraction 
653 |a text representation 
653 |a sampling 
653 |a TripAdvisor 
653 |a adaptive camouflage 
653 |a convolutional neural network (CNN) 
653 |a k-means 
653 |a object detection 
653 |a image completion 
653 |a saliency detection 
653 |a social media 
653 |a micro-blogs (Twitter) 
653 |a towards recommending influencers based on topic classification 
653 |a investigation framework 
653 |a comparison of various techniques for topic classification 
653 |a cost-benefit function 
653 |a partial differential equations 
653 |a physics-informed neural network 
653 |a wave equation 
653 |a KdV-Burgers equation 
653 |a KdV equation 
653 |a neural network 
653 |a cyclical learning rate 
653 |a remote sensing 
653 |a scene classification 
653 |a backscatter data 
653 |a lidar ceilometer 
653 |a weather detection 
653 |a online taxi-hailing demand 
653 |a backpropagation neural network 
653 |a extreme gradient boosting 
653 |a real-time prediction 
653 |a climate zone 
653 |a climate change impact 
653 |a Jhelum River Basin 
653 |a Chenab River Basin 
653 |a support vector machine 
653 |a decision tree 
653 |a large-scale dataset 
653 |a relative support distance 
653 |a support vector candidates 
653 |a answer set programming 
653 |a non-deterministic automata induction 
653 |a grammatical inference 
653 |a geopolymer concrete 
653 |a deep neural network 
653 |a ResNet 
653 |a compressive strength 
653 |a fly ash 
653 |a sleep apnea 
653 |a airflow signal 
653 |a Gaussian Mixture Models (GMM) 
653 |a cyber security 
653 |a vulnerability detection 
653 |a word embedding 
653 |a drifter trajectory 
653 |a evolutionary computation 
653 |a NCLS 
653 |a stock performance 
653 |a earning rate 
653 |a volatility 
653 |a heatwaves 
653 |a big data 
653 |a random forest regression model 
653 |a semi-regression 
653 |a early prognosis 
653 |a interpretation 
653 |a COREG algorithm 
653 |a cascaded classifier 
653 |a computer vision 
653 |a construction site management 
653 |a consumer classification 
653 |a over-the-top 
653 |a time-aware classification 
653 |a code auto-completion 
653 |a GPT-2 model 
653 |a advanced design methods 
653 |a mass operator 
653 |a structural stress 
653 |a live prediction 
653 |a vibration test 
653 |a genetic programming 
653 |a parsing expression grammar 
653 |a BiLSTM 
653 |a BERT 
653 |a NLP 
653 |a context-aware 
653 |a LDA 
653 |a LSTM 
653 |a crowdfunding 
653 |a project recommendation system 
653 |a optimization 
653 |a weather nowcasting 
653 |a deep neural networks 
653 |a autoencoders 
653 |a Principal Component Analysis 
653 |a learning classifier systems 
653 |a anticipatory classifier systems 
653 |a reinforcement learning 
653 |a OpenAI gym 
653 |a healthcare 
653 |a COVID 
653 |a time-series predictions 
653 |a ARIMA 
653 |a Prophet 
653 |a GRNN 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7503  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/101406  |7 0  |z DOAB: description of the publication