Applied Machine Learning
This reprint focuses on applications of machine learning models in a diverse range of fields and problems. It reports substantive results on a wide range of learning methods; discusses the conceptualization of problems, data representation, feature engineering, machine learning models; undertakes cr...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2023
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_101406 | ||
005 | 20230714 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20230714s2023 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-7907-8 | ||
020 | |a 9783036579061 | ||
020 | |a 9783036579078 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-7907-8 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a KNTX |2 bicssc | |
072 | 7 | |a UY |2 bicssc | |
100 | 1 | |a Dudek, Grzegorz |4 edt | |
700 | 1 | |a Dudek, Grzegorz |4 oth | |
245 | 1 | 0 | |a Applied Machine Learning |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2023 | ||
300 | |a 1 electronic resource (808 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This reprint focuses on applications of machine learning models in a diverse range of fields and problems. It reports substantive results on a wide range of learning methods; discusses the conceptualization of problems, data representation, feature engineering, machine learning models; undertakes critical comparisons with existing techniques; and presents an interpretation of the results. The topics within the chapters of the publication fall into six categories: computer vision, teaching and learning, social media, forecasting, basic problems of machine learning, and other topics. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Information technology industries |2 bicssc | |
650 | 7 | |a Computer science |2 bicssc | |
653 | |a robust matrix factorization | ||
653 | |a student grade prediction | ||
653 | |a educational data mining | ||
653 | |a side information graph | ||
653 | |a personal teaching and learning | ||
653 | |a deep multi-target prediction | ||
653 | |a Felder-Silverman learning style | ||
653 | |a adaptive e-learning systems | ||
653 | |a artificial neural network | ||
653 | |a deep learning | ||
653 | |a transfer learning | ||
653 | |a student performance prediction | ||
653 | |a Machine learning analysis | ||
653 | |a sentence modeling | ||
653 | |a topic analysis | ||
653 | |a cross referencing topic | ||
653 | |a machine learning | ||
653 | |a classification | ||
653 | |a preprocessing | ||
653 | |a instance selection | ||
653 | |a data mining | ||
653 | |a predictive analytics | ||
653 | |a sales | ||
653 | |a performance measurement | ||
653 | |a human resources | ||
653 | |a rumor refuter | ||
653 | |a nature language processing | ||
653 | |a XGBoost | ||
653 | |a feature analysis | ||
653 | |a Bitcoin | ||
653 | |a higher order neural network | ||
653 | |a volatility forecasting | ||
653 | |a hybrid models | ||
653 | |a warehouse optimization | ||
653 | |a genetic algorithms | ||
653 | |a crossover | ||
653 | |a construction productivity | ||
653 | |a construction safety | ||
653 | |a synthetic data | ||
653 | |a tracking | ||
653 | |a academic performance | ||
653 | |a course grades | ||
653 | |a grade point average | ||
653 | |a prediction | ||
653 | |a undergraduate | ||
653 | |a cloud detection | ||
653 | |a superpixel segmentation | ||
653 | |a convolutional neural networks | ||
653 | |a support vector machines | ||
653 | |a machine learning algorithms | ||
653 | |a multiple linear regression | ||
653 | |a SVM | ||
653 | |a management | ||
653 | |a social network services | ||
653 | |a image representation | ||
653 | |a local features | ||
653 | |a autoencoder | ||
653 | |a convolutional neural network | ||
653 | |a user generated content | ||
653 | |a sentiment analysis | ||
653 | |a keyword extraction | ||
653 | |a text representation | ||
653 | |a sampling | ||
653 | |a TripAdvisor | ||
653 | |a adaptive camouflage | ||
653 | |a convolutional neural network (CNN) | ||
653 | |a k-means | ||
653 | |a object detection | ||
653 | |a image completion | ||
653 | |a saliency detection | ||
653 | |a social media | ||
653 | |a micro-blogs (Twitter) | ||
653 | |a towards recommending influencers based on topic classification | ||
653 | |a investigation framework | ||
653 | |a comparison of various techniques for topic classification | ||
653 | |a cost-benefit function | ||
653 | |a partial differential equations | ||
653 | |a physics-informed neural network | ||
653 | |a wave equation | ||
653 | |a KdV-Burgers equation | ||
653 | |a KdV equation | ||
653 | |a neural network | ||
653 | |a cyclical learning rate | ||
653 | |a remote sensing | ||
653 | |a scene classification | ||
653 | |a backscatter data | ||
653 | |a lidar ceilometer | ||
653 | |a weather detection | ||
653 | |a online taxi-hailing demand | ||
653 | |a backpropagation neural network | ||
653 | |a extreme gradient boosting | ||
653 | |a real-time prediction | ||
653 | |a climate zone | ||
653 | |a climate change impact | ||
653 | |a Jhelum River Basin | ||
653 | |a Chenab River Basin | ||
653 | |a support vector machine | ||
653 | |a decision tree | ||
653 | |a large-scale dataset | ||
653 | |a relative support distance | ||
653 | |a support vector candidates | ||
653 | |a answer set programming | ||
653 | |a non-deterministic automata induction | ||
653 | |a grammatical inference | ||
653 | |a geopolymer concrete | ||
653 | |a deep neural network | ||
653 | |a ResNet | ||
653 | |a compressive strength | ||
653 | |a fly ash | ||
653 | |a sleep apnea | ||
653 | |a airflow signal | ||
653 | |a Gaussian Mixture Models (GMM) | ||
653 | |a cyber security | ||
653 | |a vulnerability detection | ||
653 | |a word embedding | ||
653 | |a drifter trajectory | ||
653 | |a evolutionary computation | ||
653 | |a NCLS | ||
653 | |a stock performance | ||
653 | |a earning rate | ||
653 | |a volatility | ||
653 | |a heatwaves | ||
653 | |a big data | ||
653 | |a random forest regression model | ||
653 | |a semi-regression | ||
653 | |a early prognosis | ||
653 | |a interpretation | ||
653 | |a COREG algorithm | ||
653 | |a cascaded classifier | ||
653 | |a computer vision | ||
653 | |a construction site management | ||
653 | |a consumer classification | ||
653 | |a over-the-top | ||
653 | |a time-aware classification | ||
653 | |a code auto-completion | ||
653 | |a GPT-2 model | ||
653 | |a advanced design methods | ||
653 | |a mass operator | ||
653 | |a structural stress | ||
653 | |a live prediction | ||
653 | |a vibration test | ||
653 | |a genetic programming | ||
653 | |a parsing expression grammar | ||
653 | |a BiLSTM | ||
653 | |a BERT | ||
653 | |a NLP | ||
653 | |a context-aware | ||
653 | |a LDA | ||
653 | |a LSTM | ||
653 | |a crowdfunding | ||
653 | |a project recommendation system | ||
653 | |a optimization | ||
653 | |a weather nowcasting | ||
653 | |a deep neural networks | ||
653 | |a autoencoders | ||
653 | |a Principal Component Analysis | ||
653 | |a learning classifier systems | ||
653 | |a anticipatory classifier systems | ||
653 | |a reinforcement learning | ||
653 | |a OpenAI gym | ||
653 | |a healthcare | ||
653 | |a COVID | ||
653 | |a time-series predictions | ||
653 | |a ARIMA | ||
653 | |a Prophet | ||
653 | |a GRNN | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/7503 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/101406 |7 0 |z DOAB: description of the publication |