Control, Optimization, and Mathematical Modeling of Complex Systems

Complex systems have long been an integral part of modern life and can be encountered everywhere. Undertaking a comprehensive study of such systems is a challenging problem, one which is impossible to solve without the use of contemporary mathematical modeling techniques. Mathematical models form th...

Full description

Saved in:
Bibliographic Details
Other Authors: Posypkin, Mikhail (Editor), Gorshenin, Andrey (Editor), Titarev, Vladimir (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
PEM
MPC
n/a
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_101409
005 20230714
003 oapen
006 m o d
007 cr|mn|---annan
008 20230714s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-7641-1 
020 |a 9783036576404 
020 |a 9783036576411 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-7641-1  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Posypkin, Mikhail  |4 edt 
700 1 |a Gorshenin, Andrey  |4 edt 
700 1 |a Titarev, Vladimir  |4 edt 
700 1 |a Posypkin, Mikhail  |4 oth 
700 1 |a Gorshenin, Andrey  |4 oth 
700 1 |a Titarev, Vladimir  |4 oth 
245 1 0 |a Control, Optimization, and Mathematical Modeling of Complex Systems 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (438 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a Complex systems have long been an integral part of modern life and can be encountered everywhere. Undertaking a comprehensive study of such systems is a challenging problem, one which is impossible to solve without the use of contemporary mathematical modeling techniques. Mathematical models form the basis for the optimal design and control of complex systems. The present reprint contains all the articles accepted and published in the Special Issue of Mathematics entitled "Control, Optimization, and Mathematical Modeling of Complex Systems". This Special Issue is focused on recent theoretical and computational studies of complex systems modeling, control, and optimization. The topics addressed in this Special Issue cover a wide range of areas, including numerical simulation in physical, social, and life sciences; the modeling and analysis of complex systems based on mathematical methods and AI/ML approaches; control problems in robotics; design optimization of complex systems, modeling in economics and social sciences; stochastic models in physics and engineering; mathematical models in material science; and high-performance computing for mathematical modeling. It is our hope that the scientific results presented in this reprint will serve as valuable sources of documentation and inspiration to those seeking to delve into complex systems modeling, control, and optimization and examine their wide-ranging applications. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a optimal control problem 
653 |a evolutionary computation 
653 |a robotics applications 
653 |a optimal control 
653 |a Lyapunov stability 
653 |a equilibrium point 
653 |a symbolic regression 
653 |a Pontryagin's maximum principle 
653 |a continuous-time Markov chains 
653 |a ergodicity bounds 
653 |a discrete state space 
653 |a rate of convergence 
653 |a logarithmic norm 
653 |a interval analysis 
653 |a function approximation 
653 |a global optimization 
653 |a convexity evaluation 
653 |a overestimators 
653 |a underestimators 
653 |a machine learning control 
653 |a general synthesis problem 
653 |a evolutionary algorithm 
653 |a adaptive interpolation algorithm 
653 |a interval ordinary differential equations (ODEs) 
653 |a sparse grids 
653 |a hierarchical basis 
653 |a multidimensional interpolation 
653 |a high dimensions 
653 |a molecular dynamics modeling 
653 |a randomized maximum entropy estimation 
653 |a probability density functions 
653 |a Lagrange multipliers 
653 |a Lyapunov-type problems 
653 |a implicit function 
653 |a rotation of vector field 
653 |a asymptotic efficiency 
653 |a thermokarst lakes 
653 |a forecasting 
653 |a dynamical tracking target 
653 |a ship towing system 
653 |a relative curvature 
653 |a adaptive control 
653 |a discrete velocity method 
653 |a lattice Boltzmann method 
653 |a computational fluid dynamics 
653 |a mathematical modeling 
653 |a estimation 
653 |a minimax techniques 
653 |a pareto optimization 
653 |a regression analysis 
653 |a statistical uncertainty 
653 |a proton exchange membrane 
653 |a proton electrolyte membrane 
653 |a PEM 
653 |a fuel cell 
653 |a PEMFC 
653 |a power electronic converter 
653 |a DC-DC boost converter 
653 |a model predictive control 
653 |a MPC 
653 |a self-scalable robots 
653 |a modular robots 
653 |a origami structures 
653 |a complex system 
653 |a synergistic effect 
653 |a performance indicator 
653 |a structure change 
653 |a soft robotics 
653 |a continuum mechanisms 
653 |a modeling of complex systems 
653 |a kinematic model of soft robots 
653 |a mathematical modeling of complex systems 
653 |a non-linear models 
653 |a soft robotic neck 
653 |a tendon-driven actuators 
653 |a mathematical modelling 
653 |a modelling in economics 
653 |a impact of the COVID-19 
653 |a logistics businesses 
653 |a fractional-order virus models 
653 |a stuxnet virus 
653 |a numerical computing 
653 |a supervisory control and data acquisition systems 
653 |a computer networks 
653 |a lyapunov analysis 
653 |a image segmentation 
653 |a remote sensing 
653 |a terrain identification 
653 |a data synthesis 
653 |a transfer learning 
653 |a controllability 
653 |a observability 
653 |a stochastic linear systems in finite and infinite dimensional spaces 
653 |a stochastic singular linear systems in finite and infinite dimensional spaces 
653 |a semigroup 
653 |a evolution operator 
653 |a GE-semigroup 
653 |a GE-evolution operator 
653 |a stochastic GE-evolution operator 
653 |a feature selection 
653 |a finite normal mixtures 
653 |a moving separation of mixtures 
653 |a deep LSTM 
653 |a neural network architectures 
653 |a deep learning 
653 |a turbulent plasma 
653 |a air-sea fluxes 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7506  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/101409  |7 0  |z DOAB: description of the publication