Spectral Flow A Functional Analytic and Index-Theoretic Approach
This is the first treatment entirely dedicated to an analytic study of spectral flow for paths of selfadjoint Fredholm operators, possibly unbounded or understood in a semi finite sense. The importance of spectral flow for homotopy and index theory are discussed in detail. Applications concern eta-i...
Saved in:
Main Author: | |
---|---|
Other Authors: | , |
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Berlin/Boston
De Gruyter
2023
|
Series: | De Gruyter Studies in Mathematics
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_101580 | ||
005 | 20230719 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20230719s2023 xx |||||o ||| 0|eng d | ||
020 | |a 9783111172477 | ||
020 | |a 9783111172477 | ||
020 | |a 9783111169897 | ||
020 | |a 9783111173085 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.1515/9783111172477 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a PBKJ |2 bicssc | |
072 | 7 | |a PBKS |2 bicssc | |
072 | 7 | |a PBW |2 bicssc | |
100 | 1 | |a Doll, Nora |4 auth | |
700 | 1 | |a Schulz-Baldes, Hermann |4 auth | |
700 | 1 | |a Waterstraat, Nils |4 auth | |
245 | 1 | 0 | |a Spectral Flow |b A Functional Analytic and Index-Theoretic Approach |
260 | |a Berlin/Boston |b De Gruyter |c 2023 | ||
300 | |a 1 electronic resource (442 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics | |
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a This is the first treatment entirely dedicated to an analytic study of spectral flow for paths of selfadjoint Fredholm operators, possibly unbounded or understood in a semi finite sense. The importance of spectral flow for homotopy and index theory are discussed in detail. Applications concern eta-invariants, the Bott-Maslov and Conley-Zehnder indices, Sturm-Liouville oscillation theory, the spectral localizer and bifurcation theory. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by-nc-nd/4.0/ |2 cc |4 https://creativecommons.org/licenses/by-nc-nd/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Differential calculus & equations |2 bicssc | |
650 | 7 | |a Numerical analysis |2 bicssc | |
650 | 7 | |a Applied mathematics |2 bicssc | |
653 | |a Self-adjoint Fredholm operators | ||
653 | |a topologies | ||
653 | |a thereon Index | ||
653 | |a theory of Fredholm pairs | ||
653 | |a Bott-Maslov and Conley-Zehnder indices | ||
653 | |a Oscillation theory Jacobi operators | ||
653 | |a scattering theory | ||
653 | |a Variational bifurcation theory | ||
856 | 4 | 0 | |a www.oapen.org |u https://library.oapen.org/bitstream/20.500.12657/63798/1/9783111172477.pdf |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/101580 |7 0 |z DOAB: description of the publication |