Foundation Models for Natural Language Processing Pre-trained Language Models Integrating Media

This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for tra...

Full description

Saved in:
Bibliographic Details
Main Author: Paaß, Gerhard (auth)
Other Authors: Giesselbach, Sven (auth)
Format: Electronic Book Chapter
Language:English
Published: Cham Springer Nature 2023
Series:Artificial Intelligence: Foundations, Theory, and Algorithms
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_107926
005 20230726
003 oapen
006 m o d
007 cr|mn|---annan
008 20230726s2023 xx |||||o ||| 0|eng d
020 |a 978-3-031-23190-2 
020 |a 9783031231902 
020 |a 9783031231896 
040 |a oapen  |c oapen 
024 7 |a 10.1007/978-3-031-23190-2  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a UYQL  |2 bicssc 
072 7 |a CFX  |2 bicssc 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
100 1 |a Paaß, Gerhard  |4 auth 
700 1 |a Giesselbach, Sven  |4 auth 
245 1 0 |a Foundation Models for Natural Language Processing  |b Pre-trained Language Models Integrating Media 
260 |a Cham  |b Springer Nature  |c 2023 
300 |a 1 electronic resource (436 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Artificial Intelligence: Foundations, Theory, and Algorithms 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI. 
540 |a Creative Commons  |f by/4.0/  |2 cc  |4 http://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Natural language & machine translation  |2 bicssc 
650 7 |a Computational linguistics  |2 bicssc 
650 7 |a Artificial intelligence  |2 bicssc 
650 7 |a Expert systems / knowledge-based systems  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
653 |a Pre-trained Language Models 
653 |a Deep Learning 
653 |a Natural Language Processing 
653 |a Transformer Models 
653 |a BERT 
653 |a GPT 
653 |a Attention Models 
653 |a Natural Language Understanding 
653 |a Multilingual Models 
653 |a Natural Language Generation 
653 |a Chatbot 
653 |a Foundation Models 
653 |a Information Extraction 
653 |a Text Generation 
856 4 0 |a www.oapen.org  |u https://library.oapen.org/bitstream/20.500.12657/63548/1/978-3-031-23190-2.pdf  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/107926  |7 0  |z DOAB: description of the publication