Computational Formalism Art History and Machine Learning

How the use of machine learning to analyze art images has revived formalism in art history, presenting a golden opportunity for art historians and computer scientists to learn from one another.Though formalism is an essential tool for art historians, much recent art history has focused on the social...

Full description

Saved in:
Bibliographic Details
Main Author: Wasielewski, Amanda (auth)
Format: Electronic Book Chapter
Language:English
Published: Cambridge The MIT Press 2023
Series:Leonardo
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_111600
005 20230731
003 oapen
006 m o d
007 cr|mn|---annan
008 20230731s2023 xx |||||o ||| 0|eng d
020 |a mitpress/14268.001.0001 
020 |a 9780262374736 
020 |a 9780262545648 
040 |a oapen  |c oapen 
024 7 |a 10.7551/mitpress/14268.001.0001  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a ACV  |2 bicssc 
072 7 |a UYQM  |2 bicssc 
072 7 |a AFKV  |2 bicssc 
100 1 |a Wasielewski, Amanda  |4 auth 
245 1 0 |a Computational Formalism  |b Art History and Machine Learning 
260 |a Cambridge  |b The MIT Press  |c 2023 
300 |a 1 electronic resource (200 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Leonardo 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a How the use of machine learning to analyze art images has revived formalism in art history, presenting a golden opportunity for art historians and computer scientists to learn from one another.Though formalism is an essential tool for art historians, much recent art history has focused on the social and political aspects of art. But now art historians are adopting machine learning methods to develop new ways to analyze the purely visual in datasets of art images. Amanda Wasielewski uses the term "computational formalism" todescribe this use of machine learning and computer vision technique in art historical research. At the same time that art historians are analyzing art images in new ways, computer scientists are using art images for experiments in machine learning and computer vision. Their research, says Wasielewski, would be greatly enriched by the inclusion of humanistic issues.The main purpose in applying computational techniques such as machine learning to art datasets is to automate the process of categorization using metrics such as style, a historically fraught concept in art history. After examining a fifteen-year trajectory in image categorization and art dataset creation in the fields of machine learning and computer vision, Wasielewski considers deep learning techniques that both create and detect forgeries and fakes in art. She investigates examples of art historical analysis in the fields of computer and information sciences, placing this research in the context of art historiography. She also raises questions as which artworks are chosen for digitization, and of those artworks that are born digital, which works gain acceptance into the canon of high art. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/BY-NC-ND/4.0/  |2 cc  |4 https://creativecommons.org/licenses/BY-NC-ND/4.0/ 
546 |a English 
650 7 |a History of art & design styles: c 1800 to c 1900  |2 bicssc 
650 7 |a Machine learning  |2 bicssc 
650 7 |a Electronic, holographic & video art  |2 bicssc 
653 |a Art history 
653 |a artificial intelligence 
653 |a machine learning 
653 |a formalism 
653 |a digital humanities 
653 |a connoisseurship 
653 |a image database 
653 |a authentication 
653 |a style 
856 4 0 |a www.oapen.org  |u https://doi.org/10.7551/mitpress/14268.001.0001  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/111600  |7 0  |z DOAB: description of the publication