Artificial Intelligence (AI) and Machine Learning (ML) in Medical Imaging Informatics towards Diagnostic Decision Making

In recent years, AI/ML tools have become more prevalent in the fields of medical imaging and imaging informatics, where systems are already outperforming physicians in a range of domains, such as in the classification of retinal fundus images in ophthalmology, chest X-rays in radiology, and skin can...

Full description

Saved in:
Bibliographic Details
Other Authors: Rahman, Mahmudur (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_112457
005 20230808
003 oapen
006 m o d
007 cr|mn|---annan
008 20230808s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8129-3 
020 |a 9783036581286 
020 |a 9783036581293 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8129-3  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a M  |2 bicssc 
100 1 |a Rahman, Mahmudur  |4 edt 
700 1 |a Rahman, Mahmudur  |4 oth 
245 1 0 |a Artificial Intelligence (AI) and Machine Learning (ML) in Medical Imaging Informatics towards Diagnostic Decision Making 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (238 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a In recent years, AI/ML tools have become more prevalent in the fields of medical imaging and imaging informatics, where systems are already outperforming physicians in a range of domains, such as in the classification of retinal fundus images in ophthalmology, chest X-rays in radiology, and skin cancer detection in dermatology, among many others. It has recently emerged as one of the fastest growing research areas given the evolution of techniques in radiology, molecular imaging, anatomical imaging, and functional imaging for detection, segmentation, diagnosis, annotation, summarization, and prediction. The ongoing innovations in this exciting and promising field play a powerful role in influencing the lives of millions through health, safety, education, and other opportunities intended to be shared across all segments of society. To achieve further progress, this Special Issue (SI) invited both research and review-type manuscripts to showcase ongoing research progress and development based on applications of AI/ML (especially DL techniques) in medical imaging to influence human health and healthcare systems in the diagnostic decision-making process. The SI published fourteen articles after a rigorous peer-review process across the spectrum of medical imaging modalities and the diversity of specialties depending on imaging techniques from radiology, dermatology, pathology, colonoscopy, endoscopy, etc. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Medicine  |2 bicssc 
653 |a machine learning 
653 |a feature selection 
653 |a osteoporosis 
653 |a postmenopausal women 
653 |a pre-screening 
653 |a risk assessment 
653 |a colorectal cancer 
653 |a colon polyp 
653 |a image features 
653 |a convolutional neural network 
653 |a artificial intelligence 
653 |a radiomics 
653 |a pancreatic imaging 
653 |a MRI 
653 |a CT 
653 |a PET 
653 |a acute lymphoblastic leukemia (ALL) 
653 |a blood smear 
653 |a convolutional neural networks 
653 |a deep learning 
653 |a white blood cells 
653 |a dysarthria 
653 |a gated recurrent units 
653 |a ordinal classification 
653 |a multi-instance learning 
653 |a weak supervision 
653 |a breast cancer 
653 |a key instance 
653 |a uncertainty select 
653 |a mammography 
653 |a deep neural network 
653 |a classification 
653 |a HAM10000 
653 |a skin lesion 
653 |a ESRGAN 
653 |a medical imaging 
653 |a healthcare 
653 |a decision making 
653 |a cervical cancer 
653 |a ensemble learning 
653 |a Internet of Medical Things 
653 |a oral cancer 
653 |a biomedical imaging 
653 |a Inception model 
653 |a hybrid deep learning 
653 |a COVID-19 CT-scan 
653 |a 3D image segmentation 
653 |a 3D UNet 
653 |a 3D ResUNet 
653 |a 3D VGGUNet 
653 |a 3D DenseUNet 
653 |a ultrasonic imaging 
653 |a kidney 
653 |a object detection 
653 |a vision loss 
653 |a diabetic retinopathy 
653 |a image enhancement 
653 |a APTOS 
653 |a stand-alone artificial intelligence 
653 |a radiology 
653 |a benchmarking 
653 |a population screening 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7570  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/112457  |7 0  |z DOAB: description of the publication