Causal Inference for Heterogeneous Data and Information Theory
The present reprint, "Causal Inference for Heterogeneous Data and Information Theory", is a special issue of Journal Entropy. This Special Issue belongs to the section "Information Theory, Probability, and Statistics". The reprint gathers thirteen original contributions of leadin...
Saved in:
Other Authors: | |
---|---|
Format: | Electronic Book Chapter |
Language: | English |
Published: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2023
|
Subjects: | |
Online Access: | DOAB: download the publication DOAB: description of the publication |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
MARC
LEADER | 00000naaaa2200000uu 4500 | ||
---|---|---|---|
001 | doab_20_500_12854_112459 | ||
005 | 20230808 | ||
003 | oapen | ||
006 | m o d | ||
007 | cr|mn|---annan | ||
008 | 20230808s2023 xx |||||o ||| 0|eng d | ||
020 | |a books978-3-0365-8051-7 | ||
020 | |a 9783036580500 | ||
020 | |a 9783036580517 | ||
040 | |a oapen |c oapen | ||
024 | 7 | |a 10.3390/books978-3-0365-8051-7 |c doi | |
041 | 0 | |a eng | |
042 | |a dc | ||
072 | 7 | |a KNTX |2 bicssc | |
072 | 7 | |a UY |2 bicssc | |
100 | 1 | |a Hlaváčková-Schindler, Kateřina |4 edt | |
700 | 1 | |a Hlaváčková-Schindler, Kateřina |4 oth | |
245 | 1 | 0 | |a Causal Inference for Heterogeneous Data and Information Theory |
260 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2023 | ||
300 | |a 1 electronic resource (282 p.) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
506 | 0 | |a Open Access |2 star |f Unrestricted online access | |
520 | |a The present reprint, "Causal Inference for Heterogeneous Data and Information Theory", is a special issue of Journal Entropy. This Special Issue belongs to the section "Information Theory, Probability, and Statistics". The reprint gathers thirteen original contributions of leading experts in the theory of causal inference, focusing namely on the utilization of instrumental variables in a causal model, estimation of average treatment effect, the role of interventions in causal models, graphical causal modeling, causal algebras, causal modeling using the theory of categories, temporal causal model, heterogeneous data, and information-theoretic approaches. | ||
540 | |a Creative Commons |f https://creativecommons.org/licenses/by/4.0/ |2 cc |4 https://creativecommons.org/licenses/by/4.0/ | ||
546 | |a English | ||
650 | 7 | |a Information technology industries |2 bicssc | |
650 | 7 | |a Computer science |2 bicssc | |
653 | |a common hidden cause | ||
653 | |a graphical models | ||
653 | |a probabilistic models | ||
653 | |a Chain Event Graphs | ||
653 | |a interventions | ||
653 | |a causal calculus | ||
653 | |a causal fairness | ||
653 | |a responsible data science | ||
653 | |a causal discovery | ||
653 | |a Hawkes process | ||
653 | |a high-dimensional statistics | ||
653 | |a hidden confounder | ||
653 | |a causality | ||
653 | |a Bitcoin | ||
653 | |a inflation | ||
653 | |a yield spreads | ||
653 | |a approximation theory | ||
653 | |a Hellinger distance | ||
653 | |a Kullback-Leibler divergence | ||
653 | |a correct specification | ||
653 | |a misspecified models | ||
653 | |a causal inference | ||
653 | |a instrumental variables | ||
653 | |a neural networks | ||
653 | |a doubly robust estimation | ||
653 | |a semi-parametric theory | ||
653 | |a instrumental variable | ||
653 | |a causal graph | ||
653 | |a non-Gaussianity | ||
653 | |a causal graphs | ||
653 | |a dynamic systems | ||
653 | |a causal learning | ||
653 | |a time | ||
653 | |a continuous | ||
653 | |a event cognition | ||
653 | |a econometrics software | ||
653 | |a causal machine learning | ||
653 | |a statistical learning | ||
653 | |a conditional average treatment effects | ||
653 | |a individualized treatment effects | ||
653 | |a multiple treatments | ||
653 | |a selection-on-observables | ||
653 | |a piecewise linear | ||
653 | |a thresholds model | ||
653 | |a causal Inference | ||
653 | |a regularization | ||
653 | |a BART | ||
653 | |a Stan | ||
653 | |a machine learning | ||
653 | |a heterogeneous treatment effects | ||
653 | |a multilevel data | ||
653 | |a grouped data | ||
653 | |a artificial intelligence | ||
653 | |a higher-order category theory | ||
653 | |a statistics | ||
653 | |a n/a | ||
856 | 4 | 0 | |a www.oapen.org |u https://mdpi.com/books/pdfview/book/7572 |7 0 |z DOAB: download the publication |
856 | 4 | 0 | |a www.oapen.org |u https://directory.doabooks.org/handle/20.500.12854/112459 |7 0 |z DOAB: description of the publication |