Statistical Data Modeling and Machine Learning with Applications II

The present reprint contains all of the articles in the second edition of the Special Issue titled "Statistical Data Modeling and Machine Learning with Applications II". This Special Issue belongs to the "Mathematics and Computer Science" Section and aims to publish research on t...

Full description

Saved in:
Bibliographic Details
Other Authors: Gocheva-Ilieva, Snezhana (Editor), Ivanov, Atanas (Editor), Kulina, Hristina (Editor)
Format: Electronic Book Chapter
Language:English
Published: Basel MDPI - Multidisciplinary Digital Publishing Institute 2023
Subjects:
Online Access:DOAB: download the publication
DOAB: description of the publication
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000naaaa2200000uu 4500
001 doab_20_500_12854_112505
005 20230808
003 oapen
006 m o d
007 cr|mn|---annan
008 20230808s2023 xx |||||o ||| 0|eng d
020 |a books978-3-0365-8201-6 
020 |a 9783036582009 
020 |a 9783036582016 
040 |a oapen  |c oapen 
024 7 |a 10.3390/books978-3-0365-8201-6  |c doi 
041 0 |a eng 
042 |a dc 
072 7 |a KNTX  |2 bicssc 
072 7 |a UY  |2 bicssc 
100 1 |a Gocheva-Ilieva, Snezhana  |4 edt 
700 1 |a Ivanov, Atanas  |4 edt 
700 1 |a Kulina, Hristina  |4 edt 
700 1 |a Gocheva-Ilieva, Snezhana  |4 oth 
700 1 |a Ivanov, Atanas  |4 oth 
700 1 |a Kulina, Hristina  |4 oth 
245 1 0 |a Statistical Data Modeling and Machine Learning with Applications II 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2023 
300 |a 1 electronic resource (344 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 0 |a Open Access  |2 star  |f Unrestricted online access 
520 |a The present reprint contains all of the articles in the second edition of the Special Issue titled "Statistical Data Modeling and Machine Learning with Applications II". This Special Issue belongs to the "Mathematics and Computer Science" Section and aims to publish research on the theory and application of statistical data modeling and machine learning. New mathematical methods and approaches, new algorithms and research frameworks, and their applications aimed at solving diverse and nontrivial practical problems are proposed and developed in this SI. We believe that the chosen papers are attractive and useful to the international scientific community and will contribute to further research in the field of statistical data modeling and machine learning. 
540 |a Creative Commons  |f https://creativecommons.org/licenses/by/4.0/  |2 cc  |4 https://creativecommons.org/licenses/by/4.0/ 
546 |a English 
650 7 |a Information technology industries  |2 bicssc 
650 7 |a Computer science  |2 bicssc 
653 |a forecasting model 
653 |a electricity energy consumption 
653 |a grey model 
653 |a artificial neural network 
653 |a machine learning 
653 |a rotation CART ensemble 
653 |a bagging 
653 |a boosting 
653 |a arcing 
653 |a simplified selective ensemble 
653 |a linear stacked model 
653 |a IoV 
653 |a xNN 
653 |a K-MEANS 
653 |a anomaly detection 
653 |a single-index models 
653 |a composite quantile regression 
653 |a SCAD 
653 |a Laplace error penalty (LEP) 
653 |a causality 
653 |a Bayesian networks 
653 |a scalability 
653 |a group lasso penalty 
653 |a data integration 
653 |a network estimation 
653 |a stability selection 
653 |a time series model 
653 |a wavelet transform 
653 |a neural network NARX 
653 |a ionospheric parameters 
653 |a gambling 
653 |a jackpot 
653 |a multidimensional integrals 
653 |a Monte Carlo methods 
653 |a lattice sequences 
653 |a digital sequences 
653 |a surface approximation 
653 |a surface segmentation 
653 |a surface denoising 
653 |a gaussian process latent variable model 
653 |a line geometry 
653 |a line elements 
653 |a regression 
653 |a classification 
653 |a prediction 
653 |a meteorological parameters 
653 |a traffic incidents 
653 |a multi-agent architecture 
653 |a air pollution 
653 |a random forest 
653 |a ARIMA errors 
653 |a MIMO averaging strategy 
653 |a multi-step ahead prediction 
653 |a unmeasured forecast 
653 |a Explainableartificial intelligence 
653 |a credit card frauds 
653 |a deep learning 
653 |a long short-term memory 
653 |a fraud classification 
653 |a lung cancer 
653 |a tumor 
653 |a CT image 
653 |a one-stage detector 
653 |a YOLO 
653 |a multi-scale 
653 |a receptive field 
653 |a data analysis 
653 |a decision trees 
653 |a LightGBM 
653 |a SHAP 
653 |a leisure time 
653 |a influencing factors 
653 |a time allocation 
653 |a neural networks 
653 |a cosmic rays 
653 |a space weather 
653 |a n/a 
856 4 0 |a www.oapen.org  |u https://mdpi.com/books/pdfview/book/7622  |7 0  |z DOAB: download the publication 
856 4 0 |a www.oapen.org  |u https://directory.doabooks.org/handle/20.500.12854/112505  |7 0  |z DOAB: description of the publication